分享一个Pyside6实现web数据展示界面的效果图

今天又是有问题直接找DS的一天,每日一问,今天我的问题是“怎么将pyside6生成的界面转成web界面,使用python语言实现web界面”,等了一会,DS给我提供了两种方案,方案如下:

在这里插入图片描述

然后,让我们来看下子DS直接给我实现的web界面效果吧。数据展示界面有点大,就只截图一小部分给你看看DS是多么的优秀(当然大家都知道DS的优秀)。

在这里插入图片描述

后面DS直接上强度了:

在这里插入图片描述

后续我也会尝试DS推荐的“结合 FastAPI + React 前后端分离”方案,等方案落地了再和大家分享吧。

### Python 数据可视化界面展示方法与教程 Python 是一种功能强大的编程语言,广泛应用于数据分析和数据可视化领域。为了实现数据的高效可视化并提供用户友好的界面展示,可以采用多种工具和技术。 #### 使用 Matplotlib 和 Tkinter 实现基础图形显示 Matplotlib 是一个常用的 Python 绘图库,能够生成高质量的二维图表[^1]。通过将其嵌入到基于 Tkinter 的 GUI 应用程序中,开发者可以让用户直接在界面上查看动态或静态的数据可视化效果。以下是简单的代码示例: ```python import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg import tkinter as tk def plot_graph(): fig, ax = plt.subplots() ax.plot([1, 2, 3], [4, 5, 6]) canvas = FigureCanvasTkAgg(fig, master=root) canvas.draw() canvas.get_tk_widget().pack() root = tk.Tk() button = tk.Button(root, text="绘制图表", command=plot_graph) button.pack() root.mainloop() ``` 上述代码展示了如何利用 `FigureCanvasTkAgg` 将 Matplotlib 图表嵌入到 Tkinter 窗口中[^2]。 #### PyQT 或 PySide 结合 Matplotlib 提供高级界面支持 除了 Tkinter 外,PyQt 或 PySide 这样的跨平台 GUI 工具包也提供了更加现代化的设计选项。它们允许创建复杂的窗口布局,并能轻松集成 Matplotlib 图形。下面是一个基本的例子: ```python from PyQt5.QtWidgets import QApplication, QMainWindow from matplotlib.figure import Figure from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas class MainWindow(QMainWindow): def __init__(self): super().__init__() self.fig = Figure(figsize=(5, 4), dpi=100) self.canvas = FigureCanvas(self.fig) axes = self.fig.add_subplot(111) axes.plot([1, 2, 3], [4, 5, 6]) self.setCentralWidget(self.canvas) app = QApplication([]) window = MainWindow() window.show() app.exec_() ``` 这段代码说明了如何使用 PyQt 来构建带有 Matplotlib 集成的应用程序。 #### Dash —— 构建交互式 Web 基础架构 Dash 是由 Plotly 开发的一个框架,用于快速搭建具有高度互动性的仪表盘应用程序。它非常适合需要在线共享或者实时更新的大规模项目。其核心理念是以声明方式定义组件及其行为,从而简化复杂 UI 的开发过程[^3]。 ```python import dash from dash import dcc, html external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.layout = html.Div([ dcc.Graph( id='example-graph', figure={ 'data': [ {'x': [1, 2, 3], 'y': [4, 1, 2], 'type': 'bar', 'name': 'SF'}, {'x': [1, 2, 3], 'y': [2, 4, 5], 'type': 'bar', 'name': u'Montréal'} ], 'layout': { 'title': 'Dash Data Visualization' } } ) ]) if __name__ == '__main__': app.run_server(debug=True) ``` 以上实例演示了怎样借助 Dash 创建包含条形图在内的网页数据可视化应用。 --- #### 总结 无论是小型桌面级解决方案还是大型网络部署方案,Python 社区都提供了丰富的资源来满足不同层次的需求。从入门级别的 Matplotlib 加上标准 GUI 框架组合,再到专业水准的 Dash 平台,总有一款适合特定应用场景的技术栈可供选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

草莓仙生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值