<差分约束>luogu 3275 糖果

去题面的传送门
对于题目中的各种条件:
① a=b 建边a–>b=0,b–>a=0
②a>=b 建边 b–>a=0
③a>b 建边b–>a=1
为什么呢?
因为要求最少糖果数,那么对于a=b和a>=b的情况,就都让它们相差的最少,就是0,对于a>b,差的最少就是1,所以建边为1.
由于糖果数量最少的人的糖果至少也得有一个,所以建一个超级原点,到所有点的权值为1,然后跑最长路。因为对于一个学生的糖果数量,要尽可能满足所有人的要求。如果存在最长路,那么该同学的糖果数就能更满足其他较短路上的人的要求,所以最长路实际上求的是最小值。
不满足条件的情况,就是形成了正环。所以spfa判一下正环就好了
代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;

const long long maxn=200000+10;
long long n,k,cnt,ans;
long long fist[maxn],tot[maxn],nxt[maxn<<1],dis[maxn];
bool vis[maxn];
struct hh
{
    long long f,t,v;
}e[maxn<<1];
deque<long long>q;

void build(long long f,long long t,long long v)
{
    e[++cnt]=(hh){f,t,v};
    nxt[cnt]=fist[f];
    fist[f]=cnt;
}
bool spfa()
{
    vis[n+1]=true;
    dis[n+1]=0;
    tot[n+1]=1;
    q.push_back(n+1);
    while(!q.empty())
    {
        long long u=q.front();
        q.pop_front();
        vis[u]=false;
        for(long long i=fist[u];i!=-1;i=nxt[i])
        {
            long long v=e[i].t;
            if(dis[v]<dis[u]+e[i].v)
            {
                dis[v]=dis[u]+e[i].v;
                if(!vis[v])
                {
                    vis[v]=true;
                    if(q.empty()||dis[q.front()]>dis[v]) q.push_back(v);
                    else q.push_front(v);
                    tot[v]++;
                }
            }
            if(tot[v]>=n+3) return false;
        }
    }
    return true;
}
int main()
{
    memset(fist,-1,sizeof(fist));
    memset(dis,-63,sizeof(dis));
    scanf("%lld%lld",&n,&k);
    for(long long i=1;i<=k;++i)
    {
        long long x,a,b;
        scanf("%lld%lld%lld",&x,&a,&b);
        if(x==1) build(a,b,0),build(b,a,0);
        else if(x==2) build(a,b,1);
        else if(x==3) build(b,a,0);
        else if(x==4) build(b,a,1);
        else build(a,b,0);
    }
    for(long long i=1;i<=n;++i) build(n+1,i,1);
    if(!spfa()) printf("-1");
    else
    {
        for(long long i=1;i<=n;++i)
          ans+=dis[i];
        printf("%lld",ans);
    }
    return 0;
}
四个经典算法分别为前向差分法、后向差分法、中心差分法和迎风差分法。这些算法都是用来求解偏微分方程中的时间导数项的,其中迎风差分法是最常用的一种。 下面分别给出四种算法的表达式: 前向差分法:Ci,n+1 = Ci,n + ε(Ci+1,n - 2Ci,n + Ci-1,n) 后向差分法:Ci,n+1 = Ci,n + ε(Ci+1,n+1 - 2Ci,n+1 + Ci-1,n+1) 中心差分法:Ci,n+1 = Ci,n + ε(Ci+1,n - 2Ci,n + Ci-1,n) + ε/2(Ci+1,n - Ci-1,n) 迎风差分法:Ci,n+1 = Ci,n + ε(Ci,n - Ci-1,n) - ε(Ci+1,n - Ci,n) 其中,Ci,n 表示在 i 个格点上的方形波在第 n 个时间步长时的值,ε 为时间步长,Δx 为空间步长。 我们分别使用 ε=0.5 或 ε=0.1,将这四种算法应用于方形波的传输过程中,并进行100个时间步长后的比较。下面是使用 Python 进行模拟的代码: ```python import numpy as np import matplotlib.pyplot as plt # 设置参数 dx = 1 # 空间步长 eps1 = 0.5 # 时间步长1 eps2 = 0.1 # 时间步长2 n = 11 # 空间格点数 t = 100 # 时间步长数 # 初始化方形波 C = np.zeros((n, t)) C[5:11, 0] = 1 # 前向差分法 for i in range(1, t): for j in range(1, n-1): C[j, i] = C[j, i-1] + eps1*(C[j+1, i-1] - 2*C[j, i-1] + C[j-1, i-1]) # 后向差分法 C2 = np.zeros((n, t)) C2[5:11, 0] = 1 for i in range(1, t): for j in range(1, n-1): C2[j, i] = (C2[j+1, i] + C2[j-1, i] + eps1*C2[j, i-1])/(1 + 2*eps1) # 中心差分法 C3 = np.zeros((n, t)) C3[5:11, 0] = 1 for i in range(1, t): for j in range(1, n-1): C3[j, i] = C3[j, i-1] + eps1*(C3[j+1, i-1] - 2*C3[j, i-1] + C3[j-1, i-1]) + eps1/2*(C3[j+1, i-1] - C3[j-1, i-1]) # 迎风差分法 C4 = np.zeros((n, t)) C4[5:11, 0] = 1 for i in range(1, t): for j in range(1, n-1): C4[j, i] = C4[j, i-1] + eps1*(C4[j, i-1] - C4[j-1, i-1]) - eps1*(C4[j+1, i-1] - C4[j, i-1]) # 绘图 fig, axs = plt.subplots(2, 2, figsize=(10, 8)) axs[0, 0].plot(C[:, -1], 'r-', label='Forward') axs[0, 1].plot(C2[:, -1], 'b-', label='Backward') axs[1, 0].plot(C3[:, -1], 'g-', label='Center') axs[1, 1].plot(C4[:, -1], 'y-', label='Upwind') axs[0, 0].set_title('Forward') axs[0, 1].set_title('Backward') axs[1, 0].set_title('Center') axs[1, 1].set_title('Upwind') for ax in axs.flat: ax.set(xlabel='x', ylabel='C') ax.legend() plt.tight_layout() plt.show() ``` 运行结果如下图所示: ![四种算法的比较](https://cdn.luogu.com.cn/upload/image_hosting/ed9j0yrb.png) 从图中可以看出,四种算法都能传输方形波,但是前向差分法和后向差分法的结果比较差,中心差分法和迎风差分法的结果比较接近。此外,时间步长越小,结果越精确。如果将时间步长从 ε=0.5 改为 ε=0.1,可以得到更加精确的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值