题目描述
省选入门题大门
另外附上模板经验题一枚:小K的农场.
幼儿园里有N个小朋友, lxhgww {\text{lxhgww}} lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的多,于是在分配糖果的时候, lxhgww {\text{lxhgww}} lxhgww需要满足小朋友们的 K个要求。幼儿园的糖果总是有限的, lxhgww {\text{lxhgww}} lxhgww想知道他至少需要准备多少个糖果,才能使得每个小朋友都能够分到糖果,并且满足小朋友们所有的要求。
输入格式
输入的第一行是两个整数 N,K。接下来K行,表示这些点需要满足的关系,每行3个数字X,A,B。
若X=1,表示第A个小朋友分到的糖果必须和第B个小朋友的一样;
若X=2,表示第A个小朋友分到的糖果必须少于第B个小朋友的;
若X=3,表示第A个小朋友分到的糖果必须不少于第B个小朋友的;
若X=4,表示第A个小朋友分到的糖果必须多于第B个小朋友的;
若X=5,表示第A个小朋友分到的糖果必须不多于第B个小朋友的.
输出格式
输出一行,表示 lxhgww {\text{lxhgww}} lxhgww老师至少需要准备的糖果数,如果不能满足小朋友们的所有要求,就输出-1。
输入输出样例
输入 #1
5 7
1 1 2
2 3 2
4 4 1
3 4 5
5 4 5
2 3 5
4 5 1
输出 #1
11
说明/提示
对于
30
%
{30\%}
30%的数据,保证
N
≤
100
{N\leq100}
N≤100.
对于
100
%
{100\%}
100%的数据,保证
N
≤
100000
{N\leq100000}
N≤100000
对于所有的数据,保证
K
≤
100000
,
1
≤
X
≤
5
,
1
≤
A
,
B
≤
N
{K\leq100000, 1\leq X\leq5, 1\leq A, B\leq N}
K≤100000,1≤X≤5,1≤A,B≤N.
解题思路
这道题第一眼看以为是小学生做的入门红题,但定睛一看,才发现这原来是个图论废话 ,这题有很多约束关系,所以很自然地想到用差分约束系统求最长路(用已死的SPFA)解决问题.(注:存图建议用手写邻接表,ans记得开long long,与虚点建边要从n~1反着建.)
代码
#include<bits/stdc++.h>
#define N 200005
#define in read()
using namespace std;
int n,k,tt;
long long ans,dis[N];
int fi[N],nxt[2*N],to[2*N],w[2*N],tot[2*N];
bool vis[2*N];
queue<int>q;
inline int in{
int i=0;char ch;
while(!isdigit(ch)){ch=getchar();}
while(isdigit(ch)){i=(i<<3)+(i<<1)+(ch-'0');ch=getchar();}
return i;
}//快读优化
inline void add(int x,int y,int z)//邻接表
{
nxt[++tt]=fi[x];
fi[x]=tt;
to[tt]=y;
w[tt]=z;
}
int main()
{
n=in,k=in;
while(k--)
{
int opt=in,u=in,v=in;
if(opt==1)//按题目所得出的不等式将各点连边
{
add(u,v,0);
add(v,u,0);
}
if(opt==2)
{
if(u==v){puts("-1");return 0;}
add(u,v,1);
}
if(opt==3)add(v,u,0);
if(opt==4)
{
if(v==u){puts("-1");return 0;}
add(v,u,1);
}
if(opt==5)add(u,v,0);
}
for(int i=n;i>=1;i--)
add(0,i,1); //从虚拟0向每个点连边,长度为1
vis[0]=1,q.push(0);
while(!q.empty())//SPFA
{
int u=q.front();
vis[u]=0,q.pop();
if(tot[u]==n-1){puts("-1");return 0;}
tot[u]++;
for(int i=fi[u];i;i=nxt[i])
{
int v=to[i];
if(dis[v]<dis[u]+w[i])
{
dis[v]=dis[u]+w[i];
if(!vis[v])
{
vis[v]=1;
q.push(v);
}
}
}
}
for(int i=1;i<=n;i++)
ans+=dis[i];//累加每个点到虚点的最长路
printf("%lld\n",ans);
return 0;
}
qwq