【SCOI2011】糖果(差分约束)

题目描述

省选入门题大门

另外附上模板经验题一枚:小K的农场.

幼儿园里有N个小朋友, lxhgww {\text{lxhgww}} lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的多,于是在分配糖果的时候, lxhgww {\text{lxhgww}} lxhgww需要满足小朋友们的 K个要求。幼儿园的糖果总是有限的, lxhgww {\text{lxhgww}} lxhgww想知道他至少需要准备多少个糖果,才能使得每个小朋友都能够分到糖果,并且满足小朋友们所有的要求。

输入格式

输入的第一行是两个整数 N,K。接下来K行,表示这些点需要满足的关系,每行3个数字X,A,B。

若X=1,表示第A个小朋友分到的糖果必须和第B个小朋友的一样;
若X=2,表示第A个小朋友分到的糖果必须少于第B个小朋友的;
若X=3,表示第A个小朋友分到的糖果必须不少于第B个小朋友的;
若X=4,表示第A个小朋友分到的糖果必须多于第B个小朋友的;
若X=5,表示第A个小朋友分到的糖果必须不多于第B个小朋友的.

输出格式

输出一行,表示 lxhgww {\text{lxhgww}} lxhgww老师至少需要准备的糖果数,如果不能满足小朋友们的所有要求,就输出-1。

输入输出样例
输入 #1
5 7
1 1 2
2 3 2
4 4 1
3 4 5
5 4 5
2 3 5
4 5 1
输出 #1
11
说明/提示
对于 30 % {30\%} 30%的数据,保证 N ≤ 100 {N\leq100} N100.
对于 100 % {100\%} 100%的数据,保证 N ≤ 100000 {N\leq100000} N100000
对于所有的数据,保证 K ≤ 100000 , 1 ≤ X ≤ 5 , 1 ≤ A , B ≤ N {K\leq100000, 1\leq X\leq5, 1\leq A, B\leq N} K100000,1X5,1A,BN.

解题思路

这道题第一眼看以为是小学生做的入门红题,但定睛一看,才发现这原来是个图论废话 ,这题有很多约束关系,所以很自然地想到用差分约束系统求最长路(用已死的SPFA)解决问题.(注:存图建议用手写邻接表,ans记得开long long,与虚点建边要从n~1反着建.)

代码

#include<bits/stdc++.h>
#define N 200005
#define in read()
using namespace std;

int n,k,tt;
long long ans,dis[N];
int fi[N],nxt[2*N],to[2*N],w[2*N],tot[2*N];
bool vis[2*N];
queue<int>q;

inline int in{
	int i=0;char ch;
	while(!isdigit(ch)){ch=getchar();}
	while(isdigit(ch)){i=(i<<3)+(i<<1)+(ch-'0');ch=getchar();}
	return i;
}//快读优化

inline void add(int x,int y,int z)//邻接表
{
	nxt[++tt]=fi[x];
	fi[x]=tt;
	to[tt]=y;
	w[tt]=z;
}

int main()
{
	n=in,k=in;
	while(k--)
	{
		int opt=in,u=in,v=in;
		if(opt==1)//按题目所得出的不等式将各点连边
		{
			add(u,v,0);
			add(v,u,0);
		}
		if(opt==2)
		{
			if(u==v){puts("-1");return 0;}
			add(u,v,1);
		}
		if(opt==3)add(v,u,0);
		if(opt==4)
		{
			if(v==u){puts("-1");return 0;}
			add(v,u,1);
		}
		if(opt==5)add(u,v,0);
	}
	for(int i=n;i>=1;i--)
	add(0,i,1); //从虚拟0向每个点连边,长度为1  
	vis[0]=1,q.push(0);
	while(!q.empty())//SPFA
	{
		int u=q.front();
		vis[u]=0,q.pop();
		if(tot[u]==n-1){puts("-1");return 0;}
		tot[u]++;
		for(int i=fi[u];i;i=nxt[i])
		{
			int v=to[i];
			if(dis[v]<dis[u]+w[i])
			{
				dis[v]=dis[u]+w[i];
				if(!vis[v])
				{
					vis[v]=1;
					q.push(v);
				}
			}
		}
	}
	for(int i=1;i<=n;i++)
	ans+=dis[i];//累加每个点到虚点的最长路
	printf("%lld\n",ans);
	return 0;
}

qwq

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liaoxiyan123

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值