openjudge 7627 鸡蛋的硬度 DP

描述
最近XX公司举办了一个奇怪的比赛:鸡蛋硬度之王争霸赛。参赛者是来自世界各地的母鸡,比赛的内容是看谁下的蛋最硬,更奇怪的是XX公司并不使用什么精密仪器来测量蛋的硬度,他们采用了一种最老土的办法–从高度扔鸡蛋–来测试鸡蛋的硬度,如果一次母鸡下的蛋从高楼的第a层摔下来没摔破,但是从a+1层摔下来时摔破了,那么就说这只母鸡的鸡蛋的硬度是a。你当然可以找出各种理由说明这种方法不科学,比如同一只母鸡下的蛋硬度可能不一样等等,但是这不影响XX公司的争霸赛,因为他们只是为了吸引大家的眼球,一个个鸡蛋从100层的高楼上掉下来的时候,这情景还是能吸引很多人驻足观看的,当然,XX公司也绝不会忘记在高楼上挂一条幅,写上“XX公司”的字样–这比赛不过是XX
公司的一个另类广告而已。 勤于思考的小A总是能从一件事情中发现一个数学问题,这件事也不例外。“假如有很多同样硬度的鸡蛋,那么我可以用二分的办法用最少的次数测出鸡蛋的硬度”,小A对自己的这个结论感到很满意,不过很快麻烦来了,“但是,假如我的鸡蛋不够用呢,比如我只有1个鸡蛋,那么我就不得不从第1层楼开始一层一层的扔,最坏情况下我要扔100次。如果有2个鸡蛋,那么就从2层楼开始的地方扔……等等,不对,好像应该从1/3的地方开始扔才对,嗯,好像也不一定啊……3个鸡蛋怎么办,4个,5个,更多呢……”,和往常一样,小A又陷入了一个思维僵局,与其说他是勤于思考,不如说他是喜欢自找麻烦。
好吧,既然麻烦来了,就得有人去解决,小A的麻烦就靠你来解决了:)

输入
输入包括多组数据,每组数据一行,包含两个正整数n和m(1<=n<=100,1<=m<=10),其中n表示楼的高度,m表示你现在拥有的鸡蛋个数,这些鸡蛋硬度相同(即它们从同样高的地方掉下来要么都摔碎要么都不碎),并且小于等于n。你可以假定硬度为x的鸡蛋从高度小于等于x的地方摔无论如何都不会碎(没摔碎的鸡蛋可以继续使用),而只要从比x高的地方扔必然会碎。
对每组输入数据,你可以假定鸡蛋的硬度在0至n之间,即在n+1层扔鸡蛋一定会碎。

输出

对于每一组输入,输出一个整数,表示使用最优策略在最坏情况下所需要的扔鸡蛋次数。

样例输入

100 1
100 2

样例输出

100
14

提示

最优策略指在最坏情况下所需要的扔鸡蛋次数最少的策略。
如果只有一个鸡蛋,你只能从第一层开始扔,在最坏的情况下,鸡蛋的硬度是100,所以需要扔100次。如果采用其他策略,你可能无法测出鸡蛋的硬度(比如你第一次在第二层的地方扔,结果碎了,这时你不能确定硬度是0还是1),即在最坏情况下你需要扔无限次,所以第一组数据的答案是100。

我们先从100层楼,2个鸡蛋开始想:

假设我们得到答案一共需要试x次。
那么第一个鸡蛋从x层开始扔,如果碎了,第二个鸡蛋从1~x-1层开始扔;如果没碎,再从x+x-1层开始扔。如果碎了,第二个鸡蛋再从x+1~x+x-2开始扔;否则,再从x+x-1+x-2层开始扔。这样一直推下去,假设第一个鸡蛋一直没碎,那么我们会得到:
“X+X−1+X−2+X−3+…+1 ≥ 100”
X≥14,也就是说我们在最坏情况下14次即可得到答案。

PS:至于为什么一开始要从x层开始扔,因为我们要保证最坏情况下的答案一直是x啊

然后,我们扩展到n层楼,m个鸡蛋:

用dp[i][j]来表示i层楼,用了j个鸡蛋测试得到的最小步数。
如果鸡蛋碎了,那么可以从dp[i-1][j-1]+1得到答案;如果没碎,那么则可以从dp[n-i][j]+1得到答案。

真·DP:

#include <iostream>
#include <cstdio>
using namespace std;

int dp[110][20];

int main()
{
    for(int i = 1; i <= 100; i++)
        for(int j = 1; j <= 10; j++)
            dp[i][j] = i;
    for(int i = 1; i <= 100; i++)
        for(int j = 1; j <= i; j++)
            for(int k = 2; k <= 10; k++)
                dp[i][k] = min(dp[i][k], 1 + max(dp[j - 1][k - 1], dp[i - j][k]));
    int n, m;
    while(scanf("%d%d", &n, &m) != EOF)
    {
        printf("%d\n", dp[n][m]);
    }
    return 0;
}

伪·DP:

#include <iostream>
#include <cstdio>
using namespace std;
const int INF = 2147483647;

int f[200][50];

int dp(int n, int m)
{
    if(f[n][m] < INF) return f[n][m];
    if(n == 1) return f[n][m] = 1;
    if(n == 0) return f[n][m] = 0;
    if(m == 1) return f[n][m] = n;
    if(m == 0) return f[n][m] = 0;
    for(int i = 1; i <= n; i++)
        f[n][m] = min(f[n][m], 1 + max(dp(i - 1, m - 1), dp(n - i, m)));
    return f[n][m]; 
}

int main()
{
    for(int i = 1; i <= 100; i++)
        for(int j = 0; j <= 10; j++)
            f[i][j] = INF;
    int n, m;
    while(scanf("%d%d", &n, &m) != EOF)
    {
        printf("%d\n", dp(n, m));
    }
    return 0;
}
  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值