题目描述 Description
Z小镇是一个景色宜人的地方,吸引来自各地的观光客来此旅游观光。Z小镇附近共有N(1< N ≤500)个景点(编号为1,2,3,…,N),这些景点被M(0< M ≤5000)条道路连接着,所有道路都是双向的,两个景点之间可能有多条道路。也许是为了保护该地的旅游资源,Z小镇有个奇怪的规定,就是对于一条给定的公路Ri,任何在该公路上行驶的车辆速度必须为Vi。频繁的改变速度使得游客们很不舒服,因此大家从一个景点前往另一个景点的时候,都希望选择行使过程中最大速度和最小速度的比尽可能小的路线,也就是所谓最舒适的路线。输入描述 Input Description
第一行包含两个正整数,N和M。 接下来的M行每行包含三个正整数:x,y和v(1≤x,y≤N),最后一行包含两个正整数s,t,表示想知道从景点s到景点t最大最小速度比最小的路径。s和t不可能相同。输出描述 Output Description
如果景点s到景点t没有路径,输出“IMPOSSIBLE”。否则输出一个数,表示最小的速度比。如果需要,输出一个既约分数。样例输入 Sample Input
样例1
4 2
1 2 1
3 4 2
1 4样例2
3 3
1 2 10
1 2 5
2 3 8
1 3样例3
3 2
1 2 2
2 3 4
1 3样例输出 Sample Output
样例1
IMPOSSIBLE样例2
5/4样例3
2数据范围及提示 Data Size & Hint
N(1< N ≤500) M(0< M ≤5000) Vi在int范围内
题解:将所有边按照边权从大到小排序,枚举最大边,从最大边开始,依次加边直到S和T联通,判断最大边与最小边的比值能否更新答案,继续枚举最大边。加边的过程可以利用并查集来维护。
代码如下:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7fffffff
using namespace std;
int fa[5050];
int n,m,s,t;
struct edge
{
int f,t,d;
}es[5050];
int find(int x)
{
return fa[x]==x?x:fa[x]=find(fa[x]);
}
void init()
{
for(int i=1;i<=n;i++) fa[i]=i;
}
bool cmp(edge a,edge b)
{
return a.d>b.d;
}
int gcd(int a,int b)
{
return b?gcd(b,a%b):a;
}
int main()
{
int aa,bb;
double rate=inf*1.0;
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
scanf("%d%d%d",&es[i].f,&es[i].t,&es[i].d);
scanf("%d%d",&s,&t);
sort(es+1,es+m+1,cmp);
for(int i=1;i<=m;i++)
{
init();
int j;
for(j=i;j<=m;j++)
{
if(find(es[j].f)!=find(es[j].t))
fa[find(es[j].f)]=find(es[j].t);
if(find(s)==find(t)) break;
}
int v1=es[i].d,v2=es[j].d;
if(v1*1.0/v2<rate)
{
aa=v1;
bb=v2;
rate=v1*1.0/v2;
}
}
int g=gcd(aa,bb);
if(rate==inf) printf("IMPOSSIBLE\n");
else if(aa%bb==0) printf("%d",aa/bb);
else printf("%d/%d",aa/g,bb/g);
return 0;
}