题目描述 Description
果园里有n颗果树,每棵果树都有一个编号i(1≤i≤n)。小明已经把每棵果树上的果子都摘下来堆在了这棵树的下方,每棵树下方的果子体积为ai。
现在小明将拿来m个袋子把这些果子都装进袋子里。每个袋子的体积为v。小明会按照如下规则把果子装进袋子里:
(a)从第1棵果树开始装起,由1到n一直装到第n棵果树。
(b)如果这棵果树下的果子能全部装进当前这个袋子,就装进去;如果不能,就关上当前这个袋子,打开一个新的袋子开始装。
小明希望在能把所有果子都装进袋子里的前提下,v尽量小。m个袋子并不一定都要装进果子。输入描述 Input Description
输入第1行,包含两个整数n和m。
第2行,包含n个整数ai。输出描述 Output Description
输出仅1行,表示最小的v。样例输入 Sample Input
样例1
3 3
1 2 3样例2
5 3
1 3 6 1 7样例3
6 3
1 2 1 3 1 4样例输出 Sample Output
样例1
3样例2
7样例3
4数据范围及提示 Data Size & Hint
【输入输出样例解释1】
每个袋子的体积为3即可。前2棵果树的果子装在第一个袋子里,第3棵果树的果子装在第二个袋子里。第三个袋子不用装了。【输入输出样例解释2】
每个袋子的体积为7即可。前2棵果树的果子装在第一个袋子里,此时第一个袋子已经装了4单位体积的果子,第3棵果树的果子装不下了,所以装进第二个袋子里,第4棵果树的果子刚好装进第二个袋子,第5棵果树的果子装进第三个袋子里。【输入输出样例解释3】
每个袋子的体积为4即可。前3棵果树的果子装在第一个袋子里,第4~5棵果树的果子装在第二个袋子里,第6棵果树的果子装在第三个袋子里。【数据范围】
对于40%的数据,0< m≤n≤1,000,0< ai≤1,000;
对于70%的数据,0< m≤n≤100,000,0< ai≤100,000;
对于100%的数据,0< m≤n≤100,000,0< ai≤1,000,000,000。
题解:很明显是个二分╭(╯^╰)╮,我们可以二分体积,每次把当前果子放入袋子,如果袋子剩余体积不够,就再加一个袋子,最后如果需要的袋子数量比拥有的袋子多就在右区间二分,否则在左区间二分。
代码如下:
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
long long a[110000];
int n,m;
bool check(long long mid)
{
int ans=0;
long long size=mid;
for(int i=1;i<=n;i++)
{
if(a[i]<=size) size-=a[i];
else
{
size=mid-a[i];
ans++;//加一个袋子
}
}
if(size!=mid) ans++;//如果当前袋子用了,ans++
if(ans>m) return true;
else return false;
}
int main()
{
long long sum=0,maxx=0;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%lld",&a[i]);
sum+=a[i];
if(a[i]>maxx) maxx=a[i];
}
long long l=maxx,r=sum,mid;//在果子体积最大值到体积和范围内二分
while(l<=r)
{
mid=(r+l)/2;
if(check(mid)) l=mid+1;
else r=mid-1;
}
printf("%lld",l);
return 0;
}
/*
10 3
222 624 23 665 252 872 840 576 738 457
*/
//1786