题目描述 Description
在Mars星球上,每个Mars人都随身佩带着一串能量项链。在项链上有N颗能量珠。能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记。因为只有这样,通过吸盘(吸盘是Mars人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。如果前一颗能量珠的头标记为m,尾标记为r,后一颗能量珠的头标记为r,尾标记为n,则聚合后释放的能量为m*r*n(Mars单位),新产生的珠子的头标记为m,尾标记为n。
需要时,Mars人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。
例如:设N=4,4颗珠子的头标记与尾标记依次为(2,3) (3,5) (5,10) (10,2)。我们用记号⊕表示两颗珠子的聚合操作,(j⊕k)表示第j,k两颗珠子聚合后所释放的能量。则第4、1两颗珠子聚合后释放的能量为:
(4⊕1)=10*2*3=60。
这一串项链可以得到最优值的一个聚合顺序所释放的总能量为
((4⊕1)⊕2)⊕3)=10*2*3+10*3*5+10*5*10=710。
输入描述 Input Description
第一行是一个正整数N(4≤N≤100),表示项链上珠子的个数。第二行是N个用空格隔开的正整数,所有的数均不超过1000。第i个数为第i颗珠子的头标记(1≤i≤N),当i< N< span>时,第i颗珠子的尾标记应该等于第i+1颗珠子的头标记。第N颗珠子的尾标记应该等于第1颗珠子的头标记。
至于珠子的顺序,你可以这样确定:将项链放到桌面上,不要出现交叉,随意指定第一颗珠子,然后按顺时针方向确定其他珠子的顺序。
输出描述 Output Description
只有一行,是一个正整数E(E≤2.1*109),为一个最优聚合顺序所释放的总能量。
样例输入 Sample Input
4
2 3 5 10
样例输出 Sample Output
710
说明
NOIP 2006 提高组 第一题
思路:dp区间合并,在序列中任选一个珠子,先将它左边的珠子合并成一个,再将它右边的珠子合并成一个,最后合并这两个珠子,枚举所有情况取最大值。
题解:
#include<iostream>
#include<cstdio>
using namespace std;
long long f[505][505];
long long a[505];
int main()
{
long long n;
scanf("%lld",&n);
for(long long i=1;i<=n;i++)
{
scanf("%lld",&a[i]);
a[i+n]=a[i];//将珠子首尾相接
}
for(long long i=1;i<=n*2-2;i++)
{
f[i][i+1]=a[i]*a[i+1]*a[i+2];
}
long long ans=0;
for(long long j=2;j<n;j++)
{
for(long long i=1;i<=n*2;i++)
{
for(long long k=i;k<i+j;k++)
{
f[i][i+j]=max(f[i][i+j],f[i][k]+f[k+1][i+j]+a[i]*a[k+1]*a[i+j+1]);
ans=max(ans,f[i][i+j]);
}
}
}
printf("%lld",ans);
return 0;
}