题目描述 Description
有N个不同的正整数数x1, x2, … xN 排成一排,我们可以从左边或右边去掉连续的i个数(只能从两边删除数),1<=i<=n,剩下N-i个数,再把剩下的数按以上操作处理,直到所有的数都被删除为止。
每次操作都有一个操作价值,比如现在要删除从i位置到k位置上的所有的数。操作价值为|xi – xk|*(k-i+1),如果只去掉一个数,操作价值为这个数的值。
任务
如何操作可以得到最大值,求操作的最大价值。
输入描述 Input Description
输入文件remove.in 的第一行为一个正整数N,第二行有N个用空格隔开的N个不同的正整数。
N个操作数为1..1000 之间的整数。
输出描述 Output Description
输出文件remove.out 包含一个正整数,为操作的最大值
样例输入 Sample Input
6
54 29 196 21 133 118
样例输出 Sample Output
768
数据范围及提示 Data Size & Hint
3<=N<=100
思路:很显然的DP思想,直接上代码。
题解:
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int a[105];
int dp[105][105];
int k[105];
int main()
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i==j)
{
dp[i][j]=a[i];
}
else
{
dp[i][j]=abs(a[j]-a[i])*abs(j-i+1);
}
}
}
for(int i=1;i<=n;i++)
{
for(int j=i;j>=1;j--)
{
if(k[i]<dp[j][i]+k[j-1])
{
k[i]=dp[j][i]+k[j-1];
}
}
}
printf("%d",k[n]);
return 0;
}