珞珈一号数据下载和预处理

数据网址

直接搜索http://59.175.109.173:8888/app/login.html即可进入数据注册页面,只需简单注册登录就可以进入下载页面了。(若登录后页面不跳转,可以尝试将浏览器切换至谷歌或火狐浏览器)
在这里插入图片描述

数据下载

下载数据时,可以根据需求,通过经纬度或行政区下载,同样也可以自定义框选下载范围。再点击查询,中间图层可以查看符合要求数据的空间分布,右侧则可查看相对应数据时间等信息。右侧勾选数据,即可查看对应数据位置,图中数据框变成蓝绿色。
在这里插入图片描述
点击预览,可查看数据的详细信息,点击下载,即可获取相关影像。
在这里插入图片描述

数据预处理

  1. 将下载的数据加载至ArcGIS软件,使用【按掩膜提取】工具,提取出研究范围内的影像数据。
    在这里插入图片描述
    在这里插入图片描述
    2.使用【投影栅格】工具,将数据坐标转换为投影坐标系。
    在这里插入图片描述
  2. 使用【栅格计算器】,根据辐射亮度转换公式,对影像进行辐射校正,即完成数据简单的预处理。
    在这里插入图片描述
    在这里插入图片描述
    辐射校正后结果:
    在这里插入图片描述
### 关于珞珈二号 SAR 数据预处理 对于珞珈二号 SAR 数据预处理,通常涉及多个步骤来确保最终数据的质量可用性。这些步骤包括但不限于辐射校正、几何校正、去噪声处理等。 #### 辐射定标 辐射定标的目的是将原始回波强度转换成物理量级,以便后续处理能够基于实际反射率或其他物理参数进行操作。这一步骤可以通过应用特定传感器模型实现[^1]。 ```python import numpy as np def radiometric_calibration(raw_data, calibration_factor): calibrated_data = raw_data * calibration_factor return calibrated_data ``` #### 几何校正 为了使图像像素位置准确反映地面坐标系中的地理位置,需要执行几何校正。此过程可能涉及到利用外部地理控制点(GCPs) 或者通过内嵌的姿态轨道信息来进行精确定位调整。 ```python from osgeo import gdal def geometric_correction(input_image_path, output_image_path, gcps_list): dataset = gdal.Open(input_image_path) warped = gdal.Warp(output_image_path, dataset, format='GTiff', dstSRS='EPSG:4326', tps=True, polynomialOrder=2, GCPs=gcps_list) del warped # Close the file to ensure it is written properly. ``` #### 去噪处理 由于合成孔径雷达(SAR) 成像过程中不可避免地引入了斑点噪声等问题,在预处理阶段还需要采取措施减少这种影响。常用的方法有多视平均法(Multi-looking Technique), Lee滤波器以及其他自适应滤波算法。 ```python import cv2 def speckle_reduction(image_array, method="lee"): if method.lower() == "lee": filtered_img = lee_filter(image_array) elif method.lower() == "multi_look": rows, cols = image_array.shape[:2] multi_looked = cv2.resize(image_array, (cols//4, rows//4)) filtered_img = cv2.resize(multi_looked, (cols, rows)) return filtered_img def lee_filter(img): img_mean = cv2.blur(img,(3,3)) img_sq = img ** 2 img_var = cv2.blur(img_sq, (3,3)) - img_mean**2 overall_variance = variance_of_laplacian(img) img_weights = img_var / (img_var + overall_variance) result = img_mean + img_weights*(img-img_mean) return result.astype(np.uint8) def variance_of_laplacian(image): laplacian = cv2.Laplacian(image,cv2.CV_64F).var() return laplacian ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值