珞珈一号夜光遥感数据地理配准,栅格数据地理配准

目录

一、夜光数据下载:

二、夜光遥感数据地理配准

 三、计算夜光数据值

四、辐射定标

 五、以表格显示分区统计

 五、结果验证


夜光数据位置和路网位置不匹配,虽然都是WGS84坐标系,不匹配!!!不要看到就直接用。

珞珈一号寿命只有6个月,也就是说只有18年10月到19年3月左右的数据。

路网数据是WGS84,路网为深圳福田,投影坐标系为wgs84-49N。

任务:计算每条街道的夜间灯光值。

一、夜光数据下载:

珞珈一号官网下载数据(注册,选定区域,下载)

珞珈一号

 注册

 下载数据,顺序1,2(眼睛图标可显示“靛青色”框内的夜光数据),3。

二、夜光遥感数据地理配准

夜光数据位置和路网位置不匹配,虽然都是WGS84坐标系,不匹配!!!不要看到就直接用。

参考的以下两个视频,第一个全看,第二个看前10min就够了。或者自己bilibili搜“地理配准”

【在ArcGIS使用矢量图对栅格图片进行地理配准】

【Arcgis地理配准与矢量化】

菜单栏——自定义——工具栏——地理配准。

选中对应点,可借助路网,建筑物数据,百度地图之类的大致参考一下,位置差不多匹配了,就可以

可以借助别的数据进行位置的大致确定。

配准之后,导出:地理配准——校正——Nodata设置为0

 三、计算夜光数据值

按腌膜提取

环境中的“处理范围”、“栅格分析”选择想保留区域的图层。

四、辐射定标

珞珈一号数据下载和预处理

在栅格计算器中输入:

Power("0314矫正提取.tif",1.5) * Power(10,-10)

 运行出错的话,把输出路径改一下,删掉“dengguang.gdb\ ”,加“.tif” 

arcgis会计算失败,用QGIS

QGIS:

 

 五、以表格显示分区统计

arcgis,有问题,直接看qgis的。

 

 用arcgis,结果会变少,建议用QGIS的分区统计

 缓冲区大小根据自己情况定。

 

 dbf查看即可

 五、结果验证

去找一些论文,看下他们数值的分布比对一下。

6、其他数据处理/程序/指导!!!

>直接看PDF吧,搬过来调格式类似了。
>通过网盘分享的文件:v1.1 数据_代码_指导.pdf
链接: https://pan.baidu.com/s/1E93QTFcdl7DQjCYZW1Kj2Q?pwd=GGGX 提取码: GGGX

**[目录:GIS数据处理/程序/指导,街景百度热力图POI路网建筑物AOI等](https://blog.csdn.net/m0_48587622/article/details/144679291?spm=1001.2014.3001.5501)**
 1. **百度热力图指导,买数据提供指导,含详细说明文档。==链接0-数据介绍:==[百度慧眼百度热力图数据处理,可直接用于论文](https://editor.csdn.net/md/?articleId=144676034)。==链接1-原理及应用:==[百度热力图数据获取,原理,处理及论文应用-CSDN博客](https://blog.csdn.net/m0_48587622/article/details/144842755?spm=1001.2014.3001.5501) 。==链接2-Pro操作:==[百度热力图数据处理流程Arcgis PRO篇,Arcgis,QGIS见链接其他文章-CSDN博客](https://blog.csdn.net/m0_48587622/article/details/144758713?spm=1001.2014.3001.5501)。**
 2. **多模型(含全部树模型)分类回归精度结果对比(回复审稿人意见之:为什么选某个模型?比如为什么选XGBoost?)。**
 
        回归模型:线性模型(Linear、Ridge 、Lasso、Huber 、Partial Least Squares),KNN,SVR,树模型(Decision Tree、RF、AdaBoost 、GBDT、XGBoost、LightGBM 、CatBoost )。可自定义增加。
        分类模型:Logistic Regression、Naive Bayes、KNN、SVM、树模型(Decision Tree、RF、AdaBoost 、GBDT、XGBoost、LightGBM 、CatBoost )可自定义增加。
        
3.**各种树模型分类回归代码(RF/GBDT/XGBoost/LightGBM/Catboost等模型对比,最优模型最优参数)。**
 3. **树模型-SHAP分析,上一步选模型,这一步用模型进行分析。**
 4. **GCN用于街道研究,如GCN实现街道功能分类。**
 5. **树模型-SHAP分析,上一步选模型,这一步用模型进行分析。**
 6. **街景语义分割后像素提取,指标计算代码(绿视率、天空开阔度、界面围合度、视觉熵/景观多样性等),含详细说明文档。[deeplabv3+街景图片语义分割,无需训练模型,看不懂也没有影响,直接使用,cityscapes数据集](https://blog.csdn.net/m0_48587622/article/details/130305968?spm=1001.2014.3001.5502)。**
 7. **街景主观感知两两对比程序(数据集生成,自定义每张图片出现次数,提示剩余总对比次数,对比程序!最少对比次数,最高的效率。[街景主观感知1:街景图片两两对比程序](https://editor.csdn.net/md/?articleId=144806908)),TrueSkill计算beautiful、safer等维度主观感知评分(原理,代码)均含详细说明文档。[街景两两对比程序,Trueskill计算评分代码,训练模型,预测街景](https://blog.csdn.net/m0_48587622/article/details/144684793)。**
 8. **街景主观感知训练,预测模型(beautiful, safer等自定义维度),多模型对比(ResNet50,ResNet101,EfficientNet、VGGNet、GoogleNet、DenseNet、MobileNet、ShuffleNet、Xception、ConvNeXt、Vision Transformer (ViT)、RegNet等),beautiful和safer维度精度均达到0.89。[街景两两对比程序,Trueskill计算评分代码,训练模型,预测街景](https://blog.csdn.net/m0_48587622/article/details/144684793)。**
 9. **街景图片色彩聚类。**
 10. **全国街景数据。**
 11. **OSM路网简化指导(详细说明文档,双线变单线,fclass选择,拓扑检查,短道路处理)。**
 12. **POI数据,重分类,各种密度,各种比例,功能混合度/熵/多样性计算。**
 13. **建筑物各种指标计算(建筑密度,容积率)。**
 14. **坐标系转化代码(bg09,wgs84,Gcj02等各种地理,投影转化)。**
 15. **GIS相关处理,指标计算,街道街区相关,活力相关,街道品质相关。**

**邮箱**:邮箱已设置自动回复!!!随意发送邮件即可获得联系方式。437969428@qq.com

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GGG信

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值