数据可视化笔记5 时间数据可视化


概括
时间数据的趋势性、周期性、季节性、随机波动
时间序列差分、分解、相关性、自相关
时间数据可视化设计的三个维度:表达维度、比例维度、布局维度
离散时间序列可视化、连续时间序列可视化

时间数据概念
-我们常说的时间数据(time data),有时也称时态数据(temporal data),简单来说就是指随时间变化的数据
-时间戳(time stamp)数据表示在某个时间点状态的数据,是大数据时代的典型特征之一,比如网站的网页日志就是典型的时间戳数据
-时间序列(time series)数据,指按照时间顺序把事物的变化发展记录下来的数据,研究随时间变化发展的规律,常用于金融建模和预测
本节重点介绍时间序列数据的可视化

时间序列数据:随着时间变化,带有时间属性
在这里插入图片描述
顺序型数据:不以时间为变量,但是有内在的排列顺序
在这里插入图片描述

时间数据的趋势性、周期性、季节性、随机波动

趋势性(Trend)
有时也称作是变化方向,指在较长一段时间上数据呈现上升或下降的规律
在这里插入图片描述季节性(Seasonal)
当时间序列受季节性因素影响时会呈现季节性模式,季节性指固定且已知的频率,可以是一年中的变化,也可以指或一周中的变化

在这里插入图片描述图为1949年至1960年月度国际航班人数折线图,我们可以发现,从趋势性上看,国际航班人数持续增长;从季节性看,每年的情况呈现类似的模式,前三季度国际航班人数持续增加,但在最后一季度都会迎来大幅下降。

周期性(Cyclic)
当数据不是以固定频率上升或下降时,就会发生一个周期,周期的持续时间通常至少为2年
在这里插入图片描述

图为1973至1995年美国月度家庭新房销售情况,我们可以发现,该时间序列无明显趋势性;从季节性看,每年的情况呈现类似的模式;从周期性看,每6-10年呈现类似的模式。
许多人将周期性与季节性混为一谈,但它们其实完全不同:如果波动不是固定频率,则它们是周期性的; 如果频率不变并且与日历的某些方面相关联,则该模式是季节性的
通常,周期的平均长度比季节的长度长

随机波动(Random fluctuations)
如果时间序列数据没有呈现明显的趋势性、季节性或周期性,则可以认为数据是随机波动的

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值