统计学之偏度系数和峰度系数

——笔记整理自中国大学mooc
偏度(Skewness)系数
引例:
1952年马科维茨把组合投资收益和风险定义为均值和方差(标准差)。
但均值和方差一定时, 偏斜程度有别。

在这里插入图片描述
偏度系数的计算
(一)基于算术平均数与众数或中位数
皮尔逊偏度系数
在这里插入图片描述
在这里插入图片描述

变动范围(-3,3)
在这里插入图片描述

(二)利用四分位数求偏度系数
鲍莱偏度系数
在这里插入图片描述在这里插入图片描述
在这里插入图片描述

(三)利用动差(矩)法求偏度系数
t阶动差(矩)是这个数据里面的所有数据减去一个常数a的t次方,然后算一个平均。
求峰度和偏度,离散的对标用的都是算数平均数。在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

峰度(Kurtosis)系数
主要反映分布的陡峭性。
在这里插入图片描述
计算方法在这里插入图片描述
在这里插入图片描述
例子
动差法求偏度系数和峰度系数:
在这里插入图片描述在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值