运筹学笔记 运输问题

本文详细介绍了运输问题的数学模型和结构特征,包括产销平衡与不平衡运输问题的模型。重点阐述了表上作业法求解运输问题,如西北角法和最小元素法确定初始基本可行解,以及使用闭回路法和位势法判断最优解。此外,还探讨了如何改进基本可行解以达到最优状态。内容深入浅出,适合运筹学和优化算法的学习者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、运输问题的模型及其结构特征

一. 运输问题的数学模型

运输问题的一般提法:
在这里插入图片描述
于是可以得到一般运输问题的模型如下:
在这里插入图片描述
在这里插入图片描述,则称该运输问题为产销平衡问题;否则,称为产销不平衡。下面讨论产销平衡问题。即模型为:
在这里插入图片描述

二. 运输问题的结构特征

举例:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

运输问题的线性规划模型具有特殊的结构,其约束方程组的系数矩阵A具有如下形式:
在这里插入图片描述
特征:约束方程组的系数矩阵A的元素全部为0或1。每一列只有2个元素为1,其余为0。对A的特殊结构做进一步的分析,还可以发现矩阵A的秩为m+n-1,即R(A)=m+n-1。
解释:系数矩阵A的m个行向量之和减去后n个行向量之和恰好为零向量。即A的m+n个行向量线性相关。故R(A)< m+n。
在这里插入图片描述
在这里插入图片描述
求解运输问题的方法与单纯形法思路相同
在这里插入图片描述
根据运输问题的特征(有利条件),建立相应的求解方法。
与单纯形法一样,同样需要讨论基本可行解检验数以及基的转换问题。

基变量的特征:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值