文章目录
1、运输问题的模型及其结构特征
一. 运输问题的数学模型
运输问题的一般提法:
于是可以得到一般运输问题的模型如下:
若,则称该运输问题为产销平衡问题;否则,称为产销不平衡。下面讨论产销平衡问题。即模型为:
二. 运输问题的结构特征
举例:
运输问题的线性规划模型具有特殊的结构,其约束方程组的系数矩阵A具有如下形式:
特征:约束方程组的系数矩阵A的元素全部为0或1。每一列只有2个元素为1,其余为0。对A的特殊结构做进一步的分析,还可以发现矩阵A的秩为m+n-1,即R(A)=m+n-1。
解释:系数矩阵A的m个行向量之和减去后n个行向量之和恰好为零向量。即A的m+n个行向量线性相关。故R(A)< m+n。
求解运输问题的方法与单纯形法思路相同
根据运输问题的特征(有利条件),建立相应的求解方法。
与单纯形法一样,同样需要讨论基本可行解、检验数以及基的转换问题。
基变量的特征: