2021.11.9
总结
早上的的模拟赛考得还行,有一些小失误。但是晚上就直接保龄了,太难受了,怎么会在晚上考模拟啊,心态崩了。
昨天晚上基本没有考试心得,基本就是在做T1的时候没想清楚,神志不清,然后觉得T2不太可做,结果就是两个小时T1坐牢。后面的题基本没有怎么思考,昨天就应该直接倒序开题。
有个很严重且频发的问题,就是如果我一来做不出来 T 1 T1 T1,不愿意直接舍弃掉 T 1 T1 T1,影响了整场考试的心态。
唯一子序列
solution:
f [ i ] f[i] f[i]表示以第 i i i位结尾的不会重复的序列的方法。那么更新的时候就有 f [ i ] = ∑ j i − 1 f [ j ] f[i] = \sum_{j}^{i-1}f[j] f[i]=∑ji−1f[j],但是由于不能出现相同的序列,所以对于 x [ i ] x[i] x[i]这个元素的上一个位置之前的 f [ ] f[] f[]我们不要用去更新当前的位置。
然后我们对于 [ l s t [ x [ i ] ] , i − 1 ] [lst[x[i]] ,i-1] [lst[x[i]],i−1]这个区间中依然存在相同的元素,为了保证满足题目的要求,所以我们只加区间内每个元素的最后位置上的值。
然后就随便用一个树状数组维护区间和,支持修改查询,就好了。
#pragma GCC optimize(3)
#pragma GCC optimize(2)
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 3e5+10;
const ll mo = 998244353;
int n,m,lst[N];
ll w[N],f[N];
void modify(int p,ll x){
for(int i=p;i<N;i+=(i&-i))w[i]+=x,w[i]%=mo;
}
ll get(int p){
ll res=0;
for(int i=p;i;i-=(i&-i))res+=w[i],res%=mo;
return res;
}
signed main(){
scanf("%d",&n);modify(1,1);
for(int i=2;i<=n+1;i++){
int x;scanf("%d",&x);
f[i]=get(i-1);
if(lst[x]){
f[i]=((f[i]-get(lst[x]-1))%mo+mo)%mo;
modify(lst[x],-f[lst[x]]);
}lst[x]=i;modify(i,f[i]);
}ll ans=0;
for(int i=1;i<N;i++)if(lst[i])ans+=f[lst[i]],ans%=mo;
printf("%lld\n",(ans%mo+mo)%mo);
return 0;
}
交互题
solution:
以 f [ i ] [ j ] f[i][j] f[i][j]表示当前已经经过了 i i i次询问,还剩 j j j的金钱,还能查询的区间。
分成三种情况
j < a [ i + 1 ] j<a[i+1] j<a[i+1]不会进行下一次询问,所以当前可以查询的区间长度为1
a [ i + 1 ] < = j < a [ i + 1 ] + b [ i + 1 ] a[i+1]<=j<a[i+1]+b[i+1] a[i+1]<=j<a[i+1]+b[i+1]进行下一次询问,但是区间不会增长,就会等于 f [ i + 1 ] [ j − a [ i + 1 ] ] f[i+1][j-a[i+1]] f[i+1][j−a[i+1]]
j > = a [ i + 1 ] + b [ i + 1 ] j>=a[i+1]+b[i+1] j>=a[i+1]+b[i+1]我们能够查询的区间就等于是 f [ i + 1 ] [ j − a [ i + 1 ] ] + f [ i + 1 ] [ j − a [ i + 1 ] − b [ i + 1 ] ] f[i+1][j-a[i+1]] +f[i+1][j-a[i+1]-b[i+1]] f[i+1][j−a[i+1]]+f[i+1][j−a[i+1]−b[i+1]]两个区间加起来。
#pragma GCC optimize(3)
#pragma GCC optimize(2)
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 1e5+10;
const ll mo = 1e9+7;
ll n,m,a[N],b[N],f[2][50005];
signed main()
{
int T;scanf("%d",&T);
while(T--){
scanf("%lld%lld",&n,&m);
for(int i=1;i<=n;i++)scanf("%lld%lld",a+i,b+i);
for(int i=0;i<=m;i++)f[0][i]=1;
int now=1,pre=0;
for(int i=n-1;i>=0;i--,pre^=1,now^=1)
for(int j=0;j<=m;j++){
if(j<a[i+1])f[now][j]=1;
else if(j>=a[i+1]&&j<a[i+1]+b[i+1])f[now][j]=f[pre][j-a[i+1]];
else f[now][j]=(f[pre][j-a[i+1]]+f[pre][j-a[i+1]-b[i+1]])%mo;
}printf("%lld\n",f[pre][m]);
memset(f,0,sizeof f);
}
return 0;
}
异或方程
solution:
首先显然子任务1很显然是一个数位DP,子任务2
x x o r 3 x = 2 x x xor 3x = 2x xxor3x=2x转化为 x x o r 2 x = 3 x x xor 2x = 3x xxor2x=3x,又因为 x o r xor xor是不进位的加法,所以就是,没有位置会损失,所以表明x中没有连续的1,对于长度为 2 1 e 18 2^{1e18} 21e18的巨大的数据范围,我们来考虑构造x这个序列,设 f [ i ] f[i] f[i]表示当前长度为 i i i的方案数,那么一定可以通过添加 0 0 0, 01 01 01来转移, f [ i ] = f [ i − 1 ] + f [ i − 2 ] f[i]=f[i-1]+f[i-2] f[i]=f[i−1]+f[i−2],这就是一个斐波那契数列了,非常的好。矩乘一下就好了。
#pragma GCC optimize(3)
#pragma GCC optimize(2)
#include<bits/stdc++.h>
#define ll long long
using namespace std;
typedef ll arr[3][3];
const int N = 1e5+10;
const ll mo = 1e9+7;
ll n,m,num[100],fc[100];
arr a,ans;
void mul(arr &x,arr y){
arr z;memset(z,0,sizeof z);
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
z[i][j]+=(x[i][k]*y[k][j])%mo,z[i][j]%=mo;
memcpy(x,z,sizeof z);
}
void quick_pow(arr &x,ll cnt){
arr res;memset(res,0,sizeof res);
for(int i=1;i<=2;i++)res[i][i]=1;
for(;cnt;cnt>>=1,mul(x,x))if(cnt&1)mul(res,x);
memcpy(x,res,sizeof res);
}
void solve(){
a[2][1]=a[1][2]=a[2][2]=1;quick_pow(a,m);
ans[1][1]=1;ans[1][2]=2;mul(ans,a);
printf("%lld\n",ans[1][1]);
}
void work(){
int len=0,i;ll res=0,mm=m;
while(mm)num[++len]=(mm&1ll),mm>>=1ll;
for(i=len;i;i--){
if(num[i+1]&&num[i+2])break;
if(num[i])res+=fc[i-1];
}if(!i)res++;
printf("%lld\n",--res);
}
void init(){
fc[0]=1;fc[1]=2;for(int i=2;i<64;i++)fc[i]=fc[i-1]+fc[i-2];
}
signed main()
{
init();scanf("%lld%lld",&n,&m);
work();if(n==2)solve();
return 0;
}
赶鸭子游戏
solution:
我们知道董王和何老板都非常聪明,所以他们一定会选择对自己最优的策略
设定 f [ i ] [ 0 ] f[i][0] f[i][0]表示何老板先手, f [ i ] [ 1 ] f[i][1] f[i][1]表示董王先手
转移:
f [ i ] [ 0 ] = a [ i ] − b [ i ] + min f [ s o n ] [ 1 ] f[i][0] =a[i]-b[i]+\min{f[son][1]} f[i][0]=a[i]−b[i]+minf[son][1]
f [ i ] [ 1 ] = a [ i ] − b [ i ] + max f [ s o n ] [ 0 ] f[i][1] =a[i]-b[i]+\max{f[son][0]} f[i][1]=a[i]−b[i]+maxf[son][0]
最后再来一个换根即可
#pragma GCC optimize(3)
#pragma GCC optimize(2)
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 2e5+10;
int n,m;
ll a[N],f[N][2],g[N][2],son[N][2];
int en[N],nex[N],lst[N],tot;
void add(int x,int y){en[++tot]=y;nex[tot]=lst[x];lst[x]=tot;}
// 0 H; 1 D;
void dfs(int u,int fa){
f[u][0]=1e18;f[u][1]=-1e18;
for(int i=lst[u];i;i=nex[i]){
int v=en[i];if(v==fa)continue;
dfs(v,u);
f[u][0]=min(f[v][1],f[u][0]);
f[u][1]=max(f[v][0],f[u][1]);
}
if(f[u][0]==1e18)f[u][0]=0;
if(f[u][1]==-1e18)f[u][1]=0;
f[u][1]+=a[u];f[u][0]+=a[u];
}
void get(int u,int fa){
ll cmx=-1e18,cmi=1e18;
g[u][0]=1e18,g[u][1]=-1e18;
for(int i=lst[u];i;i=nex[i]){
int v=en[i];
if(g[u][0]>f[v][1]){
son[u][0]=v;cmi=g[u][0];g[u][0]=f[v][1];
}else if(f[v][1]<cmi)cmi=f[v][1];
if(g[u][1]<f[v][0]){
son[u][1]=v;cmx=g[u][1];g[u][1]=f[v][0];
}else if(f[v][0]>cmx)cmx=f[v][0];
}
if(cmi==1e18)cmi=0;
if(cmx==-1e18)cmx=0;
g[u][1]+=a[u];g[u][0]+=a[u];
for(int i=lst[u];i;i=nex[i]){
int v=en[i];if(v==fa)continue;
if(son[u][0]==v)f[u][0]=cmi+a[u];
else f[u][0]=g[u][0];
if(son[u][1]==v)f[u][1]=cmx+a[u];
else f[u][1]=g[u][1];
get(v,u);
}
}
signed main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%lld",a+i);
for(int i=1;i<=n;i++){ll x;scanf("%lld",&x);a[i]-=x;}
for(int i=1,x,y;i<n;i++)scanf("%d%d",&x,&y),add(x,y),add(y,x);
dfs(1,0);get(1,0);ll ans=-1e18;
for(int i=1;i<=n;i++)ans=max(ans,g[i][0]);
printf("%lld\n",ans);
return 0;
}