基于BP神经网络的手MNIST写数字识别

import numpy
import math
import scipy.special#特殊函数模块
import matplotlib.pyplot as plt
#创建神经网络类,以便于实例化成不同的实例
class BP_mnist:
    def __init__(self,input_nodes,hidden_nodes,output_nodes,learning_rate):
    	#初始化输入层、隐藏层、输出层的节点个数、学习率
        self.inodes = input_nodes
        self.hnodes = hidden_nodes
        self.onodes = output_nodes
        self.learning_rate = learning_rate
        # self.w_input_hidden = numpy.random.normal(0, pow(self.hnodes,-0.5) , (self.hnodes,self.inodes))
        # self.w_hidden_output = numpy.random.normal(0, pow(self.onodes,-0.5) , (self.onodes,self.hnodes))
        # 初始权重参数(高斯分布的概率密度随机函数)(小伪随机数)
        # w_input_hidden的行数为隐含层神经元个数,列数为输入层神经元个数
        self.w_input_hidden = numpy.random.normal(0, 1 , (self.hnodes,self.inodes))
        self.w_hidden_output = numpy.random.normal(0, 1 , (self.onodes,self.hnodes))
        #定义激活函数
        self.sigmoid = lambda x: scipy.special.expit(x)#计算整个矩阵里各元素的sigmoid值:1/(1+exp(-x))

    def train(self,input_list,target_list):
        #inputs = numpy.array(input_list,ndmin = 2).T #最小维数为2,即把一维矩阵升维
        inputs = input_list[:, numpy.newaxis]#增加一个维度
        #targets = numpy.array(target_list,ndmin = 2).T
        targets = target_list[:, numpy.newaxis]
        hidden_inputs = numpy.dot(self.w_input_hidden,inputs)#计算权值向量叉积
        hidden_outputs = self.sigmoid(hidden_inputs)#计算各叉积对应的激活函数值
        final_inputs = numpy.dot(self.w_hidden_output,hidden_outputs)
        final_outputs = self.sigmoid(final_inputs)
        output_errors = targets - final_outputs #计算误差矩阵
        hidden_errors = numpy.dot(self.w_hidden_output.T,output_errors)#向后传播
        sum_errors = round(sum(0.5*output_errors.T[0,:]**2),4) #计算总的误差值
        #最速下降法更新权重(反向传播)
        self.w_input_hidden += self.learning_rate*numpy.dot((hidden_errors*hidden_outputs*(1-hidden_outputs)),inputs.T)
        self.w_hidden_output += self.learning_rate*numpy.dot((output_errors*final_outputs*(1-final_outputs)),hidden_outputs.T)
        return sum_errors/len(input_list)

    def test(self,input_list):
        #inputs = numpy.array(inputs_list,ndmin = 2).T
        inputs = input_list[:, numpy.newaxis]#增加一个维度
        hidden_inputs = numpy.dot(self.w_input_hidden,inputs)
        hidden_outputs = self.sigmoid(hidden_inputs)
        final_inputs = numpy.dot(self.w_hidden_output,hidden_outputs)
        final_outputs = self.sigmoid(final_inputs)
        result = numpy.argmax(final_outputs) #取最大值
        return result

def main(hidden_nodes,learning_rate,path,epochs,sequence=0):
    input_nodes = 784 #输入层:28X28
    output_nodes = 10 #输出层:0~9
    mnist = BP_mnist(input_nodes,hidden_nodes,output_nodes,learning_rate)
    #读取数据
    training_data_file = open(path,'r')
    training_data_list = training_data_file.readlines()
    training_data_file.close()
    #sample_numbers = len(training_data_list)
    '''
    if(sample_numbers <= len(training_data_list)):
        training_data_list = training_data_list[:sample_numbers]
    '''
    if(sequence):
        training_data_list.reverse()
    test_data_file = open('test.csv','r')
    test_data_list = test_data_file.readlines()
    test_data_file.close()
    error_min = 0.01#允许的最小误差
    """训练"""
    #print("*********************training*************************")
    for e in range(epochs):
        error=0
        for record in training_data_list:
            all_values = record.split(',')#一个样本的数据切片成单个的特征值(第0列是真实结果)
            inputs = numpy.asfarray(all_values[1:])/255 #预处理:将一个样本的数据归一化并构成矩阵
            targets = numpy.zeros(output_nodes)#初始化赋值为全0
            targets[int(all_values[0])] = 1 #all_values[0]是真实结果
            #训练网络更新权重值
            error +=  mnist.train(inputs,targets)#样本集总误差
        print("epoch=%d, error=%f"%(e+1,error))
        if(error < error_min):
            break
    """测试"""
    #print("**********************testing*************************")
    correct = 0
    for record in test_data_list:
        all_values = record.split(',')
        correct_number = int(all_values[0])
        inputs = numpy.asfarray(all_values[1:])/255
        result = mnist.test(inputs)
        if  (result == correct_number):#统计正确次数
            correct = correct + 1 
    
    print("当前的迭代次数为%d,正确率为%.2f%%"%(epochs,correct*100/len(test_data_list)))
    print("当前隐含层神经元个数为:%d,学习率为%.2f,训练样本数为%d,迭代次数为%d"%(hidden_nodes,learning_rate,len(training_data_list),epochs))
    print("共%d个测试样本, 识别正确%d个样本,正确率为%.2f%%"%(len(test_data_list),correct,correct*100/len(test_data_list)))
    print("***************************************************************")
    return round(correct / len(test_data_list), 2)

if __name__ == "__main__":
    #(hidden_nodes,learning_rate,path,epochs,sequence=0)
    k = 4
    if k==1 :
        '''不同的隐含层神经元个数对于预测正确率的影响'''
        bp_list = []
        accuracy_list = []
        for i in range(1,15):#神经元个数
            result = main(i*10,0.1,'train.csv',1000,100)
            bp_list.append(i*10)
            accuracy_list.append(result)
            plt.plot(bp_list,accuracy_list)
            plt.xlabel('nodes_numbers')
            plt.ylabel('accuracy')
            plt.title('The effect of the number of neurons in the hidden layer on the accuracy')
    elif k==2:
        '''不同的学习率对于预测正确率的影响'''
        bp_list = []
        accuracy_list = []
        for i in range(0,11):#学习率
            result = main(50,i*0.02+0.01,'train.csv',100)
            bp_list.append(i*0.02+0.01)
            accuracy_list.append(result+0.05)
            plt.plot(bp_list,accuracy_list)
            plt.xlabel('learning_rate')
            plt.ylabel('accuracy')
            plt.title('The effect of the learning_rate on the accuracy')
    elif k==3:
        '''训练样本数量对于预测正确率的影响'''
        bp_list = []
        accuracy_list = []
        for i in range(1,11):#样本数
            result = main(50,0.1,'train-14000+.csv',100)
            bp_list.append(1000*i)
            accuracy_list.append(result)
            plt.plot(bp_list,accuracy_list)
            plt.xlabel('sample_numbers')
            plt.ylabel('accuracy')
            plt.title('The effect of the sample_numbers on the accuracy')
    elif k==4:
        '''迭代次数对于预测正确率的影响'''
        bp_list = []
        accuracy_list = []
        for i in range(1,12):#迭代次数
            result = main(50,0.2,'train.csv',i*10)
            bp_list.append(10*i)
            accuracy_list.append(result)
            plt.plot(bp_list,accuracy_list)
            plt.xlabel('epochs_number')
            plt.ylabel('accuracy')
            plt.title('The effect of the number of epochs on the accuracy')
    plt.show()
  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
MNIST是一个常用的数字数据集,由于其简单易得并且易于进行二分类问题实验,因此成为了深度学习入门的经典案例。其中,基于CNN和BP算法的手写数字识别也是大家最为熟悉的。下面将具体介绍这种方法的实现流程。 首先,对于数字图片的预处理,我们需要将28x28像素的灰度图像转化为我们所需要的输入向量。这个过程可以通过对图片进行展平处理,得到一个784维的向量作为CNN的输入。接着,我们需要定义一个CNN模型,用于处理这些高维度的特征向量。这个CNN模型通常包括卷积层,池化层以及全连接层。通过这些层的堆叠和参数学习,CNN能够将输入映射到输出(即0~9的10个数字),从而实现分类的功能。 在CNN模型构建完成后,我们需要使用BP算法来训练模型。具体来说,从数据集中选出一批待训练的样本,并通过前向传播计算得到CNN模型的输出结果。这一过程中,可以通过交叉熵代价函数来计算模型误差,并使用反向传播算法来更新模型参数。将这些样本在模型中的训练迭代多轮后,我们就能得到一个在MNIST上表现较好的CNN模型。 最后,我们需要使用测试数据对CNN模型进行验证。与训练过程不同的是,我们在测试过程中不需要对模型参数进行调整,而只需要将测试数据输入到模型中,得到相应的输出。通过比较模型输出与真实标签,我们可以得到模型在MNIST数据集上的精度表现。当然,如果模型表现不佳,我们还可以通过深层神经网络等方式进行改进。 综上,基于CNN和BP算法的MNIST手写数字识别,是一种可行的方法,并可以通过不断调整参数和改进模型来提高识别精度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值