(1)Python之向量(Vector)距离矩阵计算

1. 引言

        距离矩阵是一个包含一组点两两距离的矩阵(即 二维数组)。因此给定 N N N个欧几里得空间中的点,其距离矩阵就是一个非负实数作为元素的 N × N N \times N N×N的对称矩阵。在机器学习中距离矩阵都计算非常常见(只要涉及距离计算,基本都需要计算距离矩阵),在本篇博客中就来记录一下如何使用Python都科学计算包numpy计算向量都距离矩阵。本篇博客讲解以行向量的欧氏距离为例讲解,但是同时给出了列向量的代码,距离矩阵的数学表达为:

给定 n × m n \times m n×m阶矩阵 X X X,满足 X = [ x 1 x 2 . . . x n ] X= \begin{bmatrix} x_1\\x_2\\...\\x_n\end{bmatrix} X=x1x2...xn,里第 i i i行向量是 m m m维向量**(注意这里是行向量)**。使得:

D i j = ∥ x i − x j ∥ D_{ij}=\left \|x_i-x_j \right \| Dij=xixj

2. 矩阵自身(行)向量之间的距离矩阵计算

        这里提供4种方法,需要使用到以下Python库:

import numpy as np 
import numpy.linalg as la #和线性代数相关的库

2.1 第一种方法:简单使用两重循环

# 行向量
#[[1,2,3],   
# [4,5,6]] 
# 得到
#[[ 0,     5.196]
# [ 5.196, 0    ]]
def compute_squared_EDM_method(X):
  # 获得矩阵都行和列,因为是行向量,因此一共有n个向量
  n,m = X.shape
  # 因为有n个向量,距离矩阵是n x n
  D = np.zeros([n, n])
  # 迭代求解向量的距离
  for i in range(n):
    for j in range(i+1, n):
      # la.norm()求向量都范数,默认是2范数
      D[i,j] = la.norm(X[i, :] - X[j, :])
      D[j,i] = D[i,j]
  return D

# 列向量
#[[1,2,3],  
# [4,5,6]] 
# 得到
#[[0,     1.414, 2.828]
# [1.414, 0,     1.414]
# [2.828, 1.414, 0    ]]
def compute_squared_EDM_method(X):
  # 获得矩阵都行和列,因为是列向量,因此一共有m个向量
  n,m = X.shape
  # 因为有m个向量,距离矩阵是m x m
  D = np.zeros([m, m])
  # 迭代求解向量的距离
  for i in range(m):
    for j in range(i+1, m):
      # la.norm()求向量都范数,默认是2范数(注意这里是列向量)
      D[i,j] = la.norm(X[:, i] - X[:, j])
      D[j,i] = D[i,j] #*1
  return D

        由于是计算矩阵自身向量之间的距离,所以结果是一个对称的三角矩阵。注意*1行代码处所做的优化。在上述方法中我们使用了两层循环,因此代码虽不简洁,但十分易懂。

2.2 第二种方法:矩阵內积双重循环

        在第一种方法中,我们使用了numpynorm这个方法,这个方法从数学上讲,其计算公式是:

∥ x i − x j ∥ = ( x i − x j ) ( x i − x j ) T \left \|x_i-x_j \right \| =\sqrt{(x_i-x_j)(x_i-x_j)^T} xixj=(xixj)(xixj)T
但是从另一方面来讲,我们可以先求点积运算,然后在进行求根运算

D i j = ( x i − x j ) ( x i − x j ) T D_{ij}=\sqrt{(x_i-x_j)(x_i-x_j)^T} Dij=(xixj)(xixj)T
上述运算可以使用点积(即矩阵内积)来计算:

# 这里是列向量
D[i,j] = np.sqrt(np.dot(X[:,i]-X[:,j],(X[:,i]-X[:,j]).T))

现在代码变化为:

# 行向量
#[[1,2,3],   
# [4,5,6]] 
# 得到
#[[ 0,     5.196]
# [ 5.196, 0    ]]
def compute_squared_EDM_method2(X):
  # 获得矩阵都行和列,因为是行向量,因此一共有n个向量
  n,m = X.shape
  # 因为有n个向量,距离矩阵是n x n
  D = np.zeros([n, n])
  # 迭代求解向量的距离
  for i in range(n):
    for j in range(i+1, n):
      # 因为是行向量,这里是行索引
      d = X[i,:] - X[j,:]
      # 向量內积运算,并进行求根
      D[i,j] = np.sqrt(np.dot(d, d))
      D[j,i] = D[i,j]
  return D
  
# 列向量
#[[1,2,3],  
# [4,5,6]] 
# 得到
#[[0,     1.414, 2.828]
# [1.414, 0,     1.414]
# [2.828, 1.414, 0    ]]
def compute_squared_EDM_method2(X):
  # 获得矩阵都行和列,因为是列向量,因此一共有m个向量
  n,m = X.shape
  # 因为有m个向量,距离矩阵是m x m
  D = np.zeros([m, m])
  # 迭代求解向量的距离
  for i in range(m):
    for j in range(i+1, m):
      # 因为是列向量,这里是列索引
      d = X[:,i] - X[:,j]
      # 向量內积运算,并求根运算
      D[i,j] = np.sqrt(np.dot(d, d))
      D[j,i] = D[i,j]
  return D

2.3 第三种方法:避免循环内的点积运算

        注意在上面的方法中,dot运算被调用了 n 2 − n n^2-n n2n(针对列向量,如果是行向量就是 m 2 − m m^2-m m2m)次,并且每次进行了m(针对列向量,如果是行向量就是 n n n)次乘积运算和n-1(针对列向量,如果是行向量就是 m 2 − m m^2-m m2m)次加法运算。尽管numpy底层可能对点积运算做了优化,但这里还是存在可能进行进一步优化。请看下面的数学推导(行向量)

D i j = ( x i − x j ) ( x i − x j ) T = x i x i T − 2 x i x j T + x j x j T D_{ij} =\sqrt{(x_i-x_j)(x_i-x_j)^T}=\sqrt{x_ix_i^T-2x_ix_j^T+x_jx_j^T} Dij=(xixj)(xixj)T =xixiT2xixjT+xjxjT

这里 x i x i T , x j x j T , x i x j T x_ix_i^T,x_jx_j^T,x_ix_j^T xixiT,xjxjT,xixjT属于格拉姆矩阵中的元素,可以通过在循环外计算矩阵,在循环内直接引用元素值即可,从而在循环内我们只需要做两次加(减)法运算:

D i j = G i i − 2 G i j + G j j D_{ij}=\sqrt{G_{ii}-2G_{ij}+G_{jj}} Dij=Gii2Gij+Gjj

格拉姆矩阵的求法很简单,只需要:

# 行向量
G=np.dot(X, X.T)
# 列向量
G=np.dot(X.T, X)

现在代码变为:

# 行向量
# 行向量
#[[1,2,3],   
# [4,5,6]] 
# 得到
#[[ 0,     5.196]
# [ 5.196, 0    ]]
def compute_squared_EDM_method3(X):
  # 获得矩阵的行和列,因为是行向量,因此一共有n个向量
  n,m = X.shape
  # 计算Gram 矩阵
  G = np.dot(X, X.T)
  # 初始化距离矩阵,因为有n个向量,距离矩阵是n x n
  D = np.zeros([n, n])
  # 迭代求解
  for i in range(n):
    for j in range(i+1, n):
      D[i,j] = np.sqrt(G[i,i] - 2 * G[i,j] + G[j,j])
      D[j,i] = D[i,j]
  return D

# 列向量
#[[1,2,3],  
# [4,5,6]] 
# 得到
#[[0,     1.414, 2.828]
# [1.414, 0,     1.414]
# [2.828, 1.414, 0    ]]
def compute_squared_EDM_method3(X):
  # 获得矩阵都行和列,因为是列向量,因此一共有m个向量
  n,m = X.shape
  # 计算Gram 矩阵
  G = np.dot(X.T, X)
  # 初始化距离矩阵, # 因为有m个向量,距离矩阵是m x m
  D = np.zeros([m, m])
  # 迭代求解
  for i in range(m):
    for j in range(i+1, m):
      D[i,j] = np.sqrt(G[i,i] - 2 * G[i,j] + G[j,j])
      D[j,i] = D[i,j]
  return D

2.4 第四种方法:避免循环

假设距离矩阵可以表示为 D = H + K − 2 G D = \sqrt{H+K-2G} D=H+K2G ,与公式 D i j = G i i − 2 G i j + G j j D_{ij}=\sqrt{G_{ii}-2G_{ij}+G_{jj}} Dij=Gii2Gij+Gjj 进行对比,有:

H i j = G i i , K i j = G j j H_{ij}=G_{ii}, K_{ij}=G_{jj} Hij=Gii,Kij=Gjj
这里H中第i行的每一个元素,取值都为 G i i G_{ii} Gii,也就是H的每一列,都对应着格拉姆矩阵的对角阵,因此,我们可以用下面的代码来计算H(n是向量的个数,无论行向量还是列向量)(帮助理解:将G都对角线元素展开成一个行向量,那么 H i j H_{ij} Hij的每一个元素只和i有关,即相应G位置向上找,所以将行向量数值排列):
H = n p . t i l e ( n p . d i a g ( G ) , ( n , 1 ) ) (将Y轴复制n倍,将X轴复制1倍) H = np.tile(np.diag(G), (n,1)) \tag{将Y轴复制n倍,将X轴复制1倍} H=np.tile(np.diag(G),(n,1))(YnX1)
此外,由于 K = H T K= H^T K=HT,所以最终距离矩阵可以计算为
D = H + H T − 2 G (开根代表对矩阵每一个元素求根) D=\sqrt{H+H^T-2G} \tag{开根代表对矩阵每一个元素求根} D=H+HT2G ()

现在,代码不再需要循环了:

# 行向量
#[[1,2,3],   
# [4,5,6]] 
# 得到
#[[ 0,     5.196]
# [ 5.196, 0    ]]
def compute_squared_EDM_method4(X):
  # 获得矩阵都行和列,因为是行向量,因此一共有n个向量
  n,m = X.shape
  # 计算Gram 矩阵
  G = np.dot(X,X.T)
  # 因为是行向量,n是向量个数,沿y轴复制n倍,x轴复制一倍
  H = np.tile(np.diag(G), (n,1))
  return np.sqrt(H + H.T - 2*G)

# 列向量
#[[1,2,3],  
# [4,5,6]] 
# 得到
#[[0,     1.414, 2.828]
# [1.414, 0,     1.414]
# [2.828, 1.414, 0    ]]
def compute_squared_EDM_method4(X):
  # 获得矩阵都行和列,因为是列向量,因此一共有m个向量
  n,m = X.shape
  # 计算Gram 矩阵
  G = np.dot(X.T, X)
  # 因为是列向量,n是向量个数,沿y轴复制m倍,x轴复制一倍
  H = np.tile(np.diag(G), (m,1))
  return np.sqrt(H + H.T - 2*G)

2.5 第五种方法:利用scipy求距离矩阵(推荐用法)

        在scipy中提供了一个工具,用于求距离矩阵,但是此工具算出来都结果不是一个矩阵,而是一个列表,此列表为距离矩阵的上三角的排列展开,如果想得到矩阵,需要转换,代码如下所示:

# 默认是针对行向量进行操作
# 向量矩阵为:
# [[1,2],
#  [3,4],
#  [5,6]
#  [7,8]]

# 距离矩阵为:
# [[0,     2.828, 5.656, 8.485],
#  [2.828, 0,     2.828, 5.656],
#  [5.656, 2.828, 0,     2.828],
#  [8.485, 5.656, 2.828, 0    ]]

# distA距离列表为(上三角矩阵展开成一个列表):
# [2.828, 5.656, 8.485, 2.828, 5.656, 2.828]

# distB距离矩阵为:
# [[0,     2.828, 5.656, 8.485],
#  [2.828, 0,     2.828, 5.656],
#  [5.656, 2.828, 0,     2.828],
#  [8.485, 5.656, 2.828, 0    ]]
import numpy as np
from scipy.spatial.distance import pdist
from scipy.spatial.distance import squareform
A=np.array([[1,2],
            [3,4],
            [5,6],
            [7,8]])
# A是一个向量矩阵:euclidean代表欧式距离
distA=pdist(A,metric='euclidean')
# 将distA数组变成一个矩阵
distB = squareform(distA)


3.两个矩阵之间的距离矩阵计算

3.1 第一种方法:使用numpy计算

        给定训练矩阵A为 5000 × 3072 5000\times 3072 5000×3072阶矩阵。这里5000代表5000幅带标签的图,3072是其各像素在RGB三个通道下的取值数。给定测试集矩阵B 500 × 3072 500\times 3072 500×3072阶矩阵。求矩阵B的各行与矩阵A的各行的距离(即两幅图的差异)矩阵,这个矩阵是一个 5000 × 500 5000\times 500 5000×500的矩阵。

更一般地,这个问题可以描述如下:

给定矩阵A为 m × k m\times k m×k阶矩阵,矩阵B为 n × k n\times k n×k阶矩阵,求矩阵B的任意行向量与矩阵A的任意行向量的距离矩阵 D m × n D_{m\times n} Dm×n。这个矩阵的数学表达式为( a , b a, b a,b均为行向量):
D i j = ( a i − b j ) ( a i − b j ) T = a i a i T − a i b j T − b j a i T + b j b j T D_{ij}=\sqrt{(a_i-b_j)(a_i-b_j)^T}=\sqrt{a_ia^T_i-a_ib^T_j-b_ja^T_i+b_jb^T_j} Dij=(aibj)(aibj)T =aiaiTaibjTbjaiT+bjbjT

为方便讨论,我们将上述各项分别记为 H , M , N , K H, M, N, K H,M,N,K,即:
D m × n = H m × m − M m × n − N n × m + K n × n (开根代表对矩阵每一个元素求根) D_{m\times n}=\sqrt{H_{m\times m}-M_{m\times n}-N_{n\times m}+K_{n\times n}} \tag{开根代表对矩阵每一个元素求根} Dm×n=Hm×mMm×nNn×m+Kn×n ()

显然上述公式是无法进行运算的,因为除了M与D外,其它矩阵的秩各不相同。所以我们要回到前一个数学表达式上。

  1. H H H D D D的贡献是对于 D D D的每一行,都加上 a i a i T a_ia^T_i aiaiT
  2. K K K D D D的贡献是对于 D D D的每一列,都加上 b j b j T b_jb^T_j bjbjT
  3. M M M N N N互为转置矩阵。即对 D i j D_{ij} Dij,要减去矩阵 N j , i N_{j,i} Nj,i元素,而这个元素就是 M i j M_{ij} Mij
  4. 由前三个总结 D i j D_{ij} Dij a i a i T − a i b j T − b j a i T + b j b j T {a_ia^T_i-a_ib^T_j-b_ja^T_i+b_jb^T_j} aiaiTaibjTbjaiT+bjbjT求根

代码如下(行向量):

# 行向量:A (3行2列)
#[[1,2],
# [3,4],
# [5,6]]

# 行向量:B (2行2列)
#[[1,2],
# [3,4]]

#得到矩阵C(3行2列),由A->B的距离,Cij代表A中都第i个向量到B中第j向量都距离
#[[0,      2.828],
# [2.828 , 0    ],
# [5.656 , 2.828]]
def compute_distances_no_loops(A, B):
    #A 有m个向量
    m = np.shape(A)[0]
    #B 有n个向量
    n = np.shape(B)[0]
    # 求得矩阵M为 m*n维(针对行向量)
    M = np.dot(A, B.T)
    # 对于H,我们只需要A . A^T的对角线元素
    # np.square(A)是A中都每一个元素都求平方
    # np.square(A).sum(axis=1) 是将每一行都元素都求和,axis是按行求和(原因是行向量)
    # np.matrix() 是将一个列表转为矩阵,该矩阵为一行多列
    # 求矩阵都转置,为了变成一列多行
    # np.tile是复制,沿Y轴复制1倍(相当于没有复制),再沿X轴复制n倍
    H = np.tile(np.matrix(np.square(A).sum(axis=1)).T,(1,n))
    # 对于H,我们只需要B . B^T的对角线元素
    # np.square(B)是B中都每一个元素都求平方
    # np.square(B).sum(axis=1) 是将每一行都元素都求和,axis是按行求和(原因是行向量)
    # np.matrix() 是将一个列表转为矩阵,该矩阵为一行多列
    # np.tile是复制,沿Y轴复制m倍(相当于没有复制),再沿X轴复制1倍
    K = np.tile(np.matrix(np.square(B).sum(axis=1)),(m,1))
    # H对M在y轴方向上传播,即H加和到M上的第一行,K对M在x轴方向上传播,即K加和到M上的每一列
    return np.sqrt(-2 * M + H + K)

代码如下(列向量):

# 行向量:A (2行3列).3个向量
#[[1,2,3],
# [4,5,6]]

# 行向量:B (2行2列),2个向量
#[[1,2],
# [3,4]]

#得到矩阵C(3行2列),由A->B都距离 Cij代表A中都第i个向量到B中第j向量都距离
#[[1    , 1    ],
# [2.236, 1    ],
# [3.605, 2.236]]
def compute_distances_no_loops(A, B):
    #A 有m个向量(针对列向量)
    m = np.shape(A)[1]
    #B 有n个向量(针对列向量)
    n = np.shape(B)[1]
    # 求得矩阵M为 m*n维
    # 求得矩阵M为 m*n维
    M = np.dot(A.T, B)
    # 对于H,我们只需要A . A^T的对角线元素,下面的方法高效求解(只计算对角线元素)
    #沿Y轴复制1倍(相当于没有复制),再沿X轴复制n倍
    H = np.tile(np.matrix(np.square(A).sum(axis=0)).T,(1,n))
    # 结果K为n维行向量.要将其元素运用到矩阵M的每一列,需要将其转置为行向量
    K = np.tile(np.matrix(np.square(B).sum(axis=0)),(m,1))
    # H对M在y轴方向上传播,即H加和到M上的第一行,K对M在x轴方向上传播,即K加和到M上的每一列
    return np.sqrt(-2 * M + H + K)

3.2 第二种方法:利用scipy求距离矩阵(推荐用法)

        在scipy中提供了一个工具,用于求两个向量集合距离矩阵,代码如下所示:

# 行向量:A (3行2列)
#[[1,2],
# [3,4],
# [5,6]]

# 行向量:B (2行2列)
#[[1,2],
# [3,4]]

#得到矩阵C(3行2列),由A->B的距离,Cij代表A中都第i个向量到B中第j向量都距离
#[[0,      2.828],
# [2.828 , 0    ],
# [5.656 , 2.828]]
import numpy as np
from scipy.spatial.distance import cdist
A=np.array([[1,2],
            [3,4],
            [5,6]])
B=np.array([[1,2],
            [3,4]])
dist=cdist(A,B,metric='euclidean')

4. 相关数学知识:什么是格拉姆矩阵?

        GRAM中文名称为格拉姆矩阵,它是个有广泛应用的矩阵。

  • v 1 , v 2 , ⋯ , v n v_1,v_2,⋯,v_n v1,v2,,vn 是内积空间的一组行(列)向量,Gram矩阵定义为: G i j = ⟨ v i , v j ⟩ = v i v j T G_{ij}=⟨v_i,v_j⟩=v_iv_j^T Gij=vi,vj=vivjT,显然其是对称矩阵。
  • 其实对于一个 X N ⋅ d X_{N⋅d} XNd(行向量N 个样本,d 个属性)的样本矩阵而言, X ⋅ X T X⋅X^T XXT 即为 Gram 矩阵。如果是列向量 X T ⋅ X X^T⋅X XTXGram 矩阵(很重要,这里需要用到的)
  • 如果 v 1 , v 2 , ⋯ , v n v_1,v_2,⋯,v_n v1,v2,,vn分别是随机向量,则 Gram 矩阵是协方差矩阵;
  • 欧式空间中向量 v 1 , v 2 , ⋯ , v n v_1,v_2,⋯,v_n v1,v2,,vnGram矩阵一定是半正定矩阵,是正定矩阵的充要条件是 v 1 , v 2 , ⋯ , v n v_1,v_2,⋯,v_n v1,v2,,vn线性无关。

具体形式为: n n n维欧式空间中任意 k ( k ≤ n ) k(k≤n) k(kn)个向量 α 1 , α 2 , ⋯ , α k α_1,α_2,⋯,α_k α1,α2,,αk的内积所组成的矩阵
Δ ( α 1 , α 2 , ⋯ , α k ) = ( ( α 1 , α 1 ) ( α 1 , α 2 ) . . . ( α 1 , α k ) ( α 2 , α 1 ) ( α 2 , α 2 ) . . . ( α 2 , α k ) . . . . . . . . . . . . ( α k , α 1 ) ( α k , α 2 ) . . . ( α k , α k ) ) \Delta\left(α_1,α_2,⋯,α_k\right)= \left(\begin{matrix} (α_1,α_1) & (α_1,α_2) & ... &(α_1,α_k) \\ (α_2,α_1) & (α_2,α_2) & ... & (α_2,α_k)\\ ... &...& ... &...\\ (α_k,α_1) & (α_k,α_2) & ... & (α_k,α_k) \end{matrix} \right) Δ(α1,α2,,αk)=(α1,α1)(α2,α1)...(αk,α1)(α1,α2)(α2,α2)...(αk,α2)............(α1,αk)(α2,αk)...(αk,αk)

Δ ( α 1 , α 2 , ⋯ , α k ) = ( α 1 α 1 T α 1 α 2 T . . . α 1 α k T α 2 α 1 T α 2 α 2 T . . . α 2 α k T . . . . . . . . . . . . α k α 1 T α k , α 2 T . . . α k , α k T ) \Delta (α_1,α_2,⋯,α_k)= \left( \begin{matrix} α_1α_1^T & α_1α_2^T & ... &α_1α_k^T\\ α_2α_1^T & α_2α_2^T & ... & α_2α_k^T\\ ... &...& ... &...\\ α_kα_1^T & α_k,α_2^T & ... & α_k,α_k^T \end{matrix} \right) Δ(α1,α2,,αk)=α1α1Tα2α1T...αkα1Tα1α2Tα2α2T...αk,α2T............α1αkTα2αkT...αk,αkT

5.数据及代码下载地址

  • 29
    点赞
  • 101
    收藏
    觉得还不错? 一键收藏
  • 9
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值