CNN autoencoder 进行异常检测——TODO,使用keras进行测试

https://sefiks.com/2018/03/23/convolutional-autoencoder-clustering-images-with-neural-networks/

https://blog.keras.io/building-autoencoders-in-keras.html

https://www.kaggle.com/atom1231/keras-autoencoder-with-simple-cnn-kfold4-lb-1704

 

https://datascience.stackexchange.com/questions/17737/does-it-make-sense-to-train-a-cnn-as-an-autoencoder

 

Yes, it makes sense to use CNNs with autoencoders or other unsupervised methods. Indeed, different ways of combining CNNs with unsupervised training have been tried for EEG data, including using (convolutional and/or stacked) autoencoders.

Examples:

Deep Feature Learning for EEG Recordings uses convolutional autoencoders with custom constraints to improve generalization across subjects and trials.

EEG-based prediction of driver's cognitive performance by deep convolutional neural network uses convolutional deep belief networks on single electrodes and combines them with fully connected layers.

A novel deep learning approach for classification of EEG motor imagery signals uses fully connected stacked autoencoders on the output of a supervisedly trained (fairly shallow) CNN.

But also purely supervised CNNs have had success on EEG data, see for example:

EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces

Deep learning with convolutional neural networks for brain mapping and decoding of movement-related information from the human EEG (disclosure: I am the first author of this work, more related work see p. 44)

Note that the EEGNet paper shows that also with a smaller number of trials, purely supervised training of their CNN can outperform their baselines (see Figure 3). Also in our experience on a dataset with only 288 training trials, purely supervised CNNs work fine, slightly outperforming a traditional filter bank common spatial patterns baseline.

转载于:https://www.cnblogs.com/bonelee/p/9876037.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值