如何防止决策树过拟合的几种方法

一.什么是过度拟合数据?

    过度拟合(overfitting)的标准定义:给定一个假设空间H,一个假设h属于H,如果存在其他的假设h'属于H,使得在训练样例上h的错误率比h'小,但在整个实例分布上h'比h的错误率小,那么就说假设h过度拟合训练数据.

   overfittingt是这样一种现象:一个假设在训练数据上能够获得比其他假设更好的拟合,但是在训练数据外的数据集上却不能很好的拟合数据.此时我们就叫这个假设出现了overfitting的现象.


二.产生过度拟合数据问题的原因有哪些?

原因1:样本问题

   (1)样本里的噪音数据干扰过大,大到模型过分记住了噪音特征,反而忽略了真实的输入输出间的关系;(什么是噪音数据?)

   (2)样本抽取错误,包括(但不限于)样本数量太少,抽样方法错误,抽样时没有足够正确考虑业务场景或业务特点,等等导致抽出的样本数据不能有效足够代表业务逻辑或业务场景;

   (3)建模时使用了样本中太多无关的输入变量。

原因2:构建决策树的方法问题

   在决策树模型搭建中,我们使用的算法对于决策树的生长没有合理的限制和修剪的话,决策树的自由生长有可能每片叶子里只包含单纯的事件数据或非事件数据,可以想象,这种决策树当然可以完美匹配(拟合)训练数据,但是一旦应用到新的业务真实数据时,效果是一塌糊涂。

   上面的原因都是现象,但是其本质只有一个,那就是“业务逻辑理解错误造成的”,无论是抽样,还是噪音,还是决策树等等,如果我们对于业务背景和业务知识非常了解,非常透彻的话,一定是可以避免绝大多数过拟合现象产生的。因为在模型从确定需求,到思路讨论,到搭建,到业务应用验证,各个环节都是可以用业务敏感来防止过拟合于未然的。


三.如何解决过度拟合数据问题的发生?  

针对原因1的解决方法:

    合理、有效地抽样,用相对能够反映业务逻辑的训练集去产生决策树;

针对原因2的解决方法(主要):

    剪枝:提前停止树的增长或者对已经生成的树按照一定的规则进行后剪枝。

剪枝的方法


    剪枝是一个简化过拟合决策树的过程。有两种常用的剪枝方法:

    (1)先剪枝(prepruning):通过提前停止树的构建而对树“剪枝”,一旦停止,节点就成为树叶。该树叶可以持有子集元组中最频繁的类;

先剪枝的方法

       有多种不同的方式可以让决策树停止生长,下面介绍几种停止决策树生长的方法:

       限制决策树的高度和叶子结点处样本的数目

       1.定义一个高度,当决策树达到该高度时就可以停止决策树的生长,这是一种最为简单的方法;

       2.达到某个结点的实例具有相同的特征向量,即使这些实例不属于同一类,也可以停止决策树的生长。这种方法对于处理数据中的数据冲突问题非常有效;

       3.定义一个阈值,当达到某个结点的实例个数小于该阈值时就可以停止决策树的生长;

       4.定义一个阈值,通过计算每次扩张对系统性能的增益,并比较增益值与该阈值的大小来决定是否停止决策树的生长。

    (2)后剪枝(postpruning):它首先构造完整的决策树,允许树过度拟合训练数据,然后对那些置信度不够的结点子树用叶子结点来代替,该叶子的类标号用该结点子树中最频繁的类标记。后剪枝的剪枝过程是删除一些子树,然后用其叶子节点代替,这个叶子节点所标识的类别通过大多数原则(majority class criterion)确定。所谓大多数原则,是指剪枝过程中, 将一些子树删除而用叶节点代替,这个叶节点所标识的类别用这棵子树中大多数训练样本所属的类别来标识,所标识的类称为majority class .相比于先剪枝,这种方法更常用,正是因为在先剪枝方法中精确地估计何时停止树增长很困难。

后剪枝的方法

    1)REP方法是一种比较简单的后剪枝的方法,在该方法中,可用的数据被分成两个样例集合:一个训练集用来形成学习到的决策树,一个分离的验证集用来评估这个决策树在后续数据上的精度,确切地说是用来评估修剪这个决策树的影响。这个方法的动机是:即使学习器可能会被训练集中的随机错误和巧合规律所误导,但验证集合不大可能表现出同样的随机波动。所以验证集可以用来对过度拟合训练集中的虚假特征提供防护检验。

   该剪枝方法考虑将书上的每个节点作为修剪的候选对象,决定是否修剪这个结点有如下步骤组成:

       1:删除以此结点为根的子树

       2:使其成为叶子结点

       3:赋予该结点关联的训练数据的最常见分类

       4:当修剪后的树对于验证集合的性能不会比原来的树差时,才真正删除该结点

      因为训练集合的过拟合,使得验证集合数据能够对其进行修正,反复进行上面的操作,从底向上的处理结点,删除那些能够最大限度的提高验证集合的精度的结点,直到进一步修剪有害为止(有害是指修剪会减低验证集合的精度)。

     REP是最简单的后剪枝方法之一,不过由于使用独立的测试集,原始决策树相比,修改后的决策树可能偏向于过度修剪。这是因为一些不会再测试集中出现的很稀少的训练集实例所对应的分枝在剪枝过如果训练集较小,通常不考虑采用REP算法。

    尽管REP有这个缺点,不过REP仍然作为一种基准来评价其它剪枝算法的性能。它对于两阶段决策树学习方法的优点和缺点提供了了一个很好的学习思路。由于验证集合没有参与决策树的创建,所以用REP剪枝后的决策树对于测试样例的偏差要好很多,能够解决一定程度的过拟合问题。

   2)PEP,悲观错误剪枝,悲观错误剪枝法是根据剪枝前后的错误率来判定子树的修剪。该方法引入了统计学上连续修正的概念弥补REP中的缺陷,在评价子树的训练错误公式中添加了一个常数,假定每个叶子结点都自动对实例的某个部分进行错误的分类。它不需要像REP(错误率降低修剪)样,需要用部分样本作为测试数据,而是完全使用训练数据来生成决策树,又用这些训练数据来完成剪枝。决策树生成和剪枝都使用训练集, 所以会产生错分。

     把一棵子树(具有多个叶子节点)的分类用一个叶子节点来替代的话,在训练集上的误判率肯定是上升的,但是在测试数据上不一定,我们需要把子树的误判计算加上一个经验性的惩罚因子,用于估计它在测试数据上的误判率。对于一棵叶子节点,它覆盖了N个样本,其中有E个错误,那么该叶子节点的错误率为(E+0.5)/N。这个0.5就是惩罚因子,那么对于该棵子树,假设它有L个叶子节点,则该子树的误判率估计为:

    剪枝后该子树内部节点变成了叶子节点,该叶子结点的误判个数J同样也需要加上一个惩罚因子,变成J+0.5。那么子树是否可以被剪枝就取决于剪枝后的错误J+0.5在

的标准误差内。对于样本的误差率e,我们可以根据经验把它估计成伯努利分布,那么可以估计出该子树的误判次数均值和标准差


    使用训练数据,子树总是比替换为一个叶节点后产生的误差小,但是使用校正的误差计算方法却并非如此。剪枝的条件:当子树的误判个数大过对应叶节点的误判个数一个标准差之后,就决定剪枝:

     这个条件就是剪枝的标准。当然并不一定非要大一个标准差,可以给定任意的置信区间,我们设定一定的显著性因子,就可以估算出误判次数的上下界。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员日子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值