实践目的内容
学习相关基础理论如机器学习、神经网络等。了解常见的神经网络算法均方误、 交叉熵、随机梯度下降、Adam等利用现有数据集进行训练模型实践实践欠拟合与过拟合的判断与应对,对相应的参数进行调优训练数据和训练过程可视化展示实践,及分析结果的可视化展示等数据预处理学习,训练集与验证集的处理和分析学习实践主流的机器学习处理框架pytorch、TensorFlow模型转换与多平台多环境的部署实践参与公司生产项目,以开发者身份进行工程实践开发和工程维护
机器学习
JAVA
Linux&Centos
Python
Flask
Docker
HTML&CSS
JavaScript
vue-element-admin
Vue
DataBase
Mysql
Redis
SqlServer
Oracle
.NET&C#
.Net WebApi
DevExpress
开发通用
开发工具
音视频 
