图论 | 期末复习笔记 | (三)

第三章:平面图

平面图
  • 若图 G G G可画在一个平面上使除顶点外边不交叉,则称 G G G可嵌入平面,或称 G G G可平面图。可平面图 G G G的边不交叉的一种画法称为 G G G的一个平面嵌入 G G G​的平面嵌入表示的图称为平面图

  • 性质:

    • 一个图是可平面图的充分必要条件是每个连通分支是可平面图。
    • 如一个连通图有割点,这从割点切开得到的图是可平面图,则这个图是可平面的,否则不可平面。
    • G G G​是一个可平面图,则每个子图都是可平面图。
  • G G G是一个平面图, G G G将所嵌入的平面划分为若干个连通的区域,每个连通的区域称为 G G G G G G的面组成的集合用 Ψ \Psi Ψ​​​表示。

  • 面积有限的区域称为平面图的内部面。无界的区域称为外部面无限面。每个平面图有且仅有一个外部面。这里指的连续区域是指区域中的任意两个点可由一条区域中的曲线连接。

  • G G G中,顶点和边都与某个给定面关联的子图,称为该面的边界。某面 f f f的边界中含有的边数(割边计算2次)称为该面 f f f的次数,记为 d e g ( f ) deg(f) deg(f)​​ 。

    • 如果两个面有共同的边界,称这两个面相邻。
    • 非割边一定是某两个面的共同边界。
    • 割边只关联一个面。由这可通俗的理解为什么割边计算2次次数。
    • 边界是由回路或者回路的并构成,回路可能是复杂回路。
  • 定理:设具有 m m m条边的平面图 G G G的所有面的集合为 Ψ \Psi Ψ,则 ∑ f ∈ Ψ d e g ( f ) = 2 m \sum_{f\in\Psi}deg(f)=2m fΨdeg(f)=2m​。

  • Euler公式:设 G G G是具有 n n n个点 m m m条边 ϕ \phi ϕ个面的连通平面图,则有 n − m + ϕ = 2 n-m+\phi=2 nm+ϕ=2。(数学归纳法)

    推论1:设 G G G是具有 n n n个点 m m m条边 ϕ \phi ϕ个面 k k k个连通分支的平面图,则 n − m + ϕ = k + 1 n-m+\phi=k+1 nm+ϕ=k+1

    推论2:设 G G G是具有 n n n个点 m m m条边 ϕ \phi ϕ个面的连通平面图,如果对 G G G的每个面 f f f,有 d e g ( f ) ⩾ l ⩾ 3 deg(f)\geqslant l\geqslant3 deg(f)l3,则 m ⩽ l l − 2 ( n − 2 ) m\leqslant\frac{l}{l-2}(n-2) ml2l(n2)(必要条件)

    推论3:设 G G G是具有 n n n个点 m m m条边 ϕ \phi ϕ个面的简单平面图且 n ⩾ 3 n\geqslant3 n3,则 m ⩽ 3 n − 6 m\leqslant3n-6 m3n6​。(必要条件)

    推论4:设 G G G是具有 n n n个点 m m m条边的连通平面图,若 G G G的每个面均由长度是 l l l的圈围成,则 m ( l − 2 ) = l ( n − 2 ) m(l-2)=l(n-2) m(l2)=l(n2)

    推论5:设 G G G是具有 n n n个点 m m m条边的简单平面图,则 δ ⩽ 5 \delta\leqslant5 δ5。(反证法)

    ⭐️ K 3 , 3 K_{3,3} K3,3 K 5 K_{5} K5​​是非常重要的两个不可平面图!!!

图的嵌入性问题
曲面嵌入:
  1. 球面嵌入: G G G可球面嵌入当且仅当 G G G​可平面嵌入。去掉北极点的二维球面同胚与平面。
  2. 环面嵌入:不可平面图有可能可嵌入其他曲面。
极大平面图
  • G G G是简单可平面图,如果 G G G K i ( 1 ⩽ i ⩽ 4 ) K_i(1\leqslant i\leqslant4) Ki(1i4),或者在 G G G的任意非邻接顶点间添加一条边后,得到的图均是非可平面图,则称 G G G​是极大可平面图。极大可平面图的平面嵌入称为极大平面图。

  • 注意:**只有在简单图前提下才定义极大平面图。**对任何一个平面嵌入,在已有的边上加任意多条平行边不破坏平面性。

  • 定理:设 G G G是极大平面图,则 G G G必然连通;若 G G G的阶数大于等于3,则 G G G无割边。(反证法)

  • 定理:设 G G G是至少有3个顶点的简单平面图,则 G G G是极大平面图,当且仅当 G G G的每个面的次数是3。

    • 推论1:设 G G G n n n个点 m m m条边 ϕ \phi ϕ个面的极大平面图且 n ⩾ 3 n\geqslant3 n3,则(1) m = 3 n − 6 m=3n-6 m=3n6(2) ϕ = 2 n − 4 \phi=2n-4 ϕ=2n4

    • 推论2:设 G G G n n n个点 m m m条边的简单平面图且 n ⩾ 3 n\geqslant3 n3,则 G G G是极大平面图的充要条件是 m = 3 n − 6 m=3n-6 m=3n6

  • 定理:设 G G G n ⩾ 4 n\geqslant4 n4的极大简单平面图,则 G G G的最小度数大于等于3。

  • 注意:顶点数相同的极大平面图并不唯一。

    • 例:设 G G G是一个简单图,若顶点数 n ⩾ 11 n\geqslant11 n11,则 G G G G ′ G' G的补图中,至少有一个是不可平面图。
平面图的对偶图
定义
  • 定义:平面图 G G G的对偶图 G ∗ G^* G,将每个面当作一个点,边数不变。
性质
  1. G ∗ G^* G的顶点数等于 G G G的面数
  2. G ∗ G^* G的边数等于 G G G的边数
  3. d ( v ∗ ) = d e g ( f ) d(v^*)=deg(f) d(v)=deg(f)
  4. G G G是连通图时, G ∗ G^* G的面数等于 G G G的顶点数,但 G G G不连通时, G ∗ G^* G的面数不一定等于 G G G​的顶点数
定理
  • 定理:平面图 G G G​的对偶图必然连通
推论
  1. ( G ∗ ) ∗ (G^*)^* (G)不一定等于 G G G
  2. G G G是平面图,则 ( G ∗ ) ∗ ≅ G (G^*)^*\cong G (G)G当且仅当 G G G​​是连通的
  3. 同构的平面图可以有不同构的对偶图,因为同构的平面图有不同的平面嵌入,则它们的对偶图不一定能同构。
平面图的判定
收缩与同胚
  • 定义:在图 G G G的边上插入一个2度顶点,使一条边分成两条边,称将图在2度顶点内扩充;去掉一个图的2度顶点,使关联它们的两条边合并成一条边,称将图 G G G在2度顶点内收缩。
  • 定义:两个图 G 1 G_1 G1 G 2 G_2 G2说是同胚的,如果 G 1 ≅ G 2 G_1\cong G_2 G1G2​,或者通过反复在2度顶点内扩充和收缩后能够变成一对同构的图。
库拉托斯基定理
  • 库拉托斯基定理:图 G G G是可平面的,当且仅当它不含 K 5 K_5 K5 K 3 , 3 K_{3,3} K3,3​​同胚的子图。
图的初等收缩
  • 定义:设 u v uv uv是简单图 G G G的一条边。去掉该边,重合其端点,在删去由此产生的环和平行边。这一过程称为图 G G G​的初等收缩或图的边收缩运算。称 G G G可收缩到 H H H是指对 G G G通过一系列边收缩后可得到图 H H H​。
瓦格纳定理
  • 瓦格纳定理:简单图 G G G是可平面图当且仅当它不含有可收缩到 K 5 K_5 K5 K 3 , 3 K_{3,3} K3,3的子图。
平面图的厚度
  • 定义:如果一个图不是平面图,把它的边嵌入到几个平面,使得每个平面上的边不交叉,即把图的边集划分成 E ( G ) = ⋃ i = 1 t E i , E i ∩ E j = ∅ ( i ≠ j ) E(G)=\bigcup\limits_{i=1}^{t}E_i,E_i\cap E_j=\varnothing(i\neq j) E(G)=i=1tEi,EiEj=(i=j),且每个边导出的子图 G [ E i ] ( i = 1 , 2 , … , t ) G[E_i](i=1,2,\ldots,t) G[Ei](i=1,2,,t)皆为平面图, t t t的最小值称为图 G G G​​的厚度。平面图的厚度为1。非平面图,其厚度最少为2。

下一章请见:
图论 | 期末复习笔记 | (四)

  • 22
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值