## 从驾校到自动驾驶的启示
当我们报名学习自动驾驶时,驾校不会要求我们先学会骑自行车。这种将已有经验快速迁移到新任务的能力,正是人类智能的精妙之处。迁移学习(Transfer Learning)就是让AI获得这种能力的核心技术。本文将带您深入探索这一改变深度学习格局的重要技术,并通过实战代码展示如何让AI模型获得"举一反三"的超能力。
---
## 一、迁移学习的核心原理
### 1.1 什么是迁移学习?
迁移学习通过将已训练模型(源领域)的知识迁移到新模型(目标领域),使目标模型能用更少的数据和计算资源获得更好的性能。这就像:
```python
# 伪代码示例:知识迁移的本质
pretrained_knowledge = train_model(large_source_dataset) # 在大型数据集上预训练
fine_tuned_model = pretrained_knowledge.transfer(small_target_dataset) # 在小数据集上微调
```
### 1.2 为什么需要迁移学习?
- **数据困境**:80%的优质数据集中在头部企业
- **计算成本**:训练ResNet-152需要≈27,000度电(相当于3