自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 收藏
  • 关注

原创 小土堆Pytorch笔记P32、33

编程基础很弱,需要机器学习,学习记录,按自己理解写的,希望以后能学懂吧,要是有大神看到还请赐教。模型是在GPU中训练的,然后这里的代码读取的tensor需要将其放入GPU中进行计算。完整的模型验证(测试,demo)套路-利用已经训练好的模型,然后给它提供输入。

2023-09-02 15:50:16 101

原创 小土堆Pytorch笔记P30、31

编程基础很弱,需要机器学习,学习记录,按自己理解写的,希望以后能学懂吧,要是有大神看到还请赐教。在代码中找到”网络模型“、”数据(输入,标注)“、”损失函数“;使用.cuda()然后再返回。在原来代码的基础上修改一部分就可以了,具有两种方式让代码在GPU上进行训练。利用GPU训练(一)使用time进行计时。

2023-09-02 14:28:17 78

原创 小土堆Pytorch笔记P27、28、29

编程基础很弱,需要机器学习,学习记录,按自己理解写的,希望以后能学懂吧,要是有大神看到还请赐教。一般来说,网络和代码分开。

2023-09-02 11:02:53 69

原创 小土堆Pytorch笔记P25、26

原因在于没有Tudui这个类,还需要将之前的网络结构class给复制过去,仅仅不需要写网络初始化那一步。编程基础很弱,需要机器学习,学习记录,按自己理解写的,希望以后能学懂吧,要是有大神看到还请赐教。建立一个神经网络模型,按照方式1保存。可以看到,已经改过来了。然后加载,发现会报错。在现有网络基础上添加。注意,方式1有陷阱。

2023-09-02 09:16:29 68

原创 小土堆Pytorch笔记P23、24

之前讲了,使用损失函数时,可以调用损失函数的backward进行反向传播可以求出每个需要调节的参数的梯度,有了这个梯度,就可以用优化器对梯度进行调增。以上代码相当于只看了一遍数据集,也就是只进行了一轮的学习,那么在这个循环外面再嵌套一层循环,运行20次epoch。编程基础很弱,需要机器学习,学习记录,按自己理解写的,希望以后能学懂吧,要是有大神看到还请赐教。优化器,就是根据这些梯度对神经网络中的这些参数进行更新,使得对整体的loss进行降低的效果。断点打在这里,可以发现在反向传播前,这里是没有梯度的。

2023-09-01 20:42:08 72 1

原创 小土堆Pytorch笔记P22

首先,第一个为卷积层,输入chanel为3,输出chanel为32,发现输入输出大小不变,翻阅Pytorch文档计算。编程基础很弱,需要机器学习,学习记录,按自己理解写的,希望以后能学懂吧,要是有大神看到还请赐教。本节课讲解上边这张图的网络构建,和Sequential使用。与以上的网络效果一样。

2023-09-01 16:49:57 54 1

原创 小土堆Pytorch笔记P18、19、20、21

保留输入特征的同时,使数据量减小。对于网络来讲,保留特征数据量减小对网络计算速度有好处。类似于1080P视频最大池化后变为720P,保留内容的同时文件缩小。编程基础很弱,需要机器学习,学习记录,按自己理解写的,希望以后能学懂吧,要是有大神看到还请赐教。在官方文档中,TORCHVISION.MODELS中提供了一些写好的Module。ceil_mode为True表示数据不足卷积核的时候,仍可以取最大,如图所示。非线性变化主要目的是为网络引入更多非线性特征。为什么要进行最大池化,最大池化作用是什么?

2023-09-01 15:23:18 89 1

原创 小土堆Pytorch笔记P16、17

编程基础很弱,需要机器学习,学习记录,按自己理解写的,希望以后能学懂吧,要是有大神看到还请赐教。首先跳到类的初始化,然后给x赋值,接着跳到forward中给x加1,然后return出来。Containers:对神经网络定义了一些结构,在结构中添加一些内容就可以组成神经网络。关于神经网络的一些工具在Pytorch官网帮助文档中torch.nn里面。

2023-09-01 10:34:52 58 1

原创 小土堆Pytorch笔记P14、15

看 CIFAR10中数据集返回的是啥,Ctrl左键CIFAR10看帮助,里边__getitem__返回的是啥。包含6w张32*32的彩色图,共分为10个类别,每个类别6k张图像。5w张图像为训练图,1w为测试图。dataset相当于扑克牌,dataloader从dataset中取数据到神经网络中,相当于抓牌。编程基础很弱,需要机器学习,学习记录,按自己理解写的,希望以后能学懂吧,要是有大神看到还请赐教。可以看到,当shuffle为True时,两次循环选取图片不一样。batch_size:一次抓几张牌。

2023-09-01 09:19:55 49 1

原创 小土堆Pytorch笔记P12、13

其中需要参数为列表,这个列表中包含transform的类型。如下列代码所示,Comepose内列表为transforms内的对象(描述可能不对,稍微想象一下)。4.一般输入类型给你说,但要是不知道输出类型,可以试出来。编程基础很弱,需要机器学习,学习记录,按自己理解写的,希望以后能学懂吧,要是有大神看到还请赐教。随即裁剪,输入size,若为sequence,裁剪为对应宽高;1.使用transforms内的方式方法,需要关注他们的输入输出类型。cv.imread()处理的格式,narrays。

2023-08-31 20:40:21 49

原创 小土堆Pytorch笔记P10、11

transforms.py 作为一个工具箱里面有totensor、resize等工具,输入一个图片,输出一个结果。编程基础很弱,需要机器学习,学习记录,按自己理解写的,希望以后能学懂吧,要是有大神看到还请赐教。在源代码中应该都看到过transform,transform主要用于对图片进行一些变换。transform的结构以及用法。那么,这两节课都在讲什么呢。

2023-08-31 17:07:12 51

原创 小土堆Pytorch笔记P8、9

add_image()中img_tensor需要的数据类型为torch.tensor或numpy.array,使用PIL读取图片类型不符合。编程基础很弱,需要机器学习,学习记录,按自己理解写的,希望以后能学懂吧,要是有大神看到还请赐教。1.np.array()将PIL打开的图片转化为对应类型。视频中赋予相对地址,我没弄明白,这里用绝对地址凑活吧。add_image()的使用(常用来观察训练结果)Pycharm看帮助按住Ctrl左键想查看的。在其中输入:(注意,这里要输入绝对路径)2.使用OpenCv。

2023-08-31 16:21:50 85

原创 小土堆Pytorch笔记P6、7

编程基础很弱,需要机器学习,学习记录,按自己理解写的,希望以后能学懂吧,要是有大神看到还请赐教。Datasets:提取某些数据并编号,并获取对应Label。可知总共有多少数据。DataLoader:数据打包,为网络提取不同数据形式。这里相对路径没整明白,改成拼接式。Pytorch加载数据初认识。

2023-08-31 14:57:54 89

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除