小土堆Pytorch笔记P6、7

本文介绍了如何在PyTorch中使用`Datasets`和`DataLoader`类加载和组织数据,包括从PIL库读取图像,构建自定义`MyData`Dataset类,以及处理文件路径。作者通过实例展示了如何创建和操作数据集,以准备机器学习模型训练。
摘要由CSDN通过智能技术生成

编程基础很弱,需要机器学习,学习记录,按自己理解写的,希望以后能学懂吧,要是有大神看到还请赐教。

Pytorch加载数据初认识

读取数据两个类:

Datasets:提取某些数据并编号,并获取对应Label。可知总共有多少数据。

DataLoader:数据打包,为网络提取不同数据形式。

如何使用Datasets类:

# 从torch.utils.data仓库拿出Dataset工具
from torch.utils.data import Dataset

代码实战:

#Pycharm console
#使用好处:可以看清内部结构。
from PIL import Image
img_path=""
img=Image.open(img_path)
img.size

#从右侧可以看到在变量img内部结构,发现有size选项。
#由此,知道仓库内的东西。(抽象说法,类比ABAQUS)

这里相对路径没整明白,改成拼接式。

# dataset类
from torch.utils.data import Dataset
from PIL import Image
import os

#继承类还是什么?
class MyData(Dataset):
    def __init__(self, root_dir, label_dir):
        self.root_dir = root_dir  # 相对地址
        self.label_dir = label_dir  # 相对地址内的文件夹名
        self.path = os.path.join(self.root_dir, self.label_dir)  # 此函数将以上两地址拼接
        self.img_path = os.listdir(self.path)  # 将地址内取列表?

    def __getitem__(self, idx):
        img_name = self.img_path[idx]  # 根据索引获取文件name
        img_item_path = os.path.join(self.root_dir, self.label_dir, img_name)  # 拼接为文件路径
        img = Image.open(img_item_path)  # 使用Image打开文件路径,此时变量img为图片
        label = self.label_dir  # 获取标签
        return img, label  # 返回图片与图片对应的标签

    def __len__(self):
        return len(self.img_path)  # 记录img_path列表长度,即文件个数

#由于视频中相对地址没懂,此处使用绝对地址来拼接
root_dir = "D:\\Scientific_Research\\Pycharmproject\\Biji\\dataset\\train"
ants_label_dir = "ants"
bees_label_dir = "bees"

#Mydata()需要两个输入,分别为root_dir,label_dir
ants_dataset = MyData(root_dir=root_dir, label_dir=ants_label_dir)
bees_dataset = MyData(root_dir=root_dir, label_dir=bees_label_dir)

#通过索引访问将以上两个列表内容,返回元组
ants_dataset[0]#此为一个元组,(图片,标签)
ants_dataset[0][0].show()#显示图片

train_dataset = ants_dataset + bees_dataset#将蚂蚁、蜜蜂数据集相加,即用于数据集拼接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值