1280 前缀后缀集合
题目来源: Codility
基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注
一个数组包含N个正整数,其中有些是重复的。一个前缀后缀集是满足这样条件的下标对(P,S), 0<= P,S < N 满足数组元素A[0..P]的值也在A[S..N - 1]的值中出现,并且A[S..N - 1]中的值也再A[0..P]中出现。换句话说前缀的集合A[0..P]与后缀集合A[S..N - 1]包含完全相同的值。求这样的前缀后缀集合的数量。
例如:3 5 7 3 3 5,共有14个集合符合条件:(1, 4), (1, 3), (2, 2), (2, 1), (2, 0), (3, 2), (3, 1), (3, 0), (4, 2), (4, 1), (4, 0), (5, 2), (5, 1), (5, 0)
本题由 @javaman 翻译。
Input
第1行:一个数N, 表示数组的长度(1 <= N <= 50000)。
第2 - N + 1行:每行1个数,对应数组中的元素Ai。(1 <= Ai <= 10^9)
Output
输出符合条件的集合数量。
Input示例
6
3
5
7
3
3
5
Output示例
14
李陶冶 (题目提供者)
瞎搞一下就行了
分别维护前后缀的集合set
每次扩张了前缀集合 就更新(扩张)后缀集合 同时维护有多少个后缀集合等价于当前后缀集合
#include <bits/stdc++.h>
#define ll long long
#define pii pair<int,int>
#define MEM(a,x) memset(a,x,sizeof(a))
using namespace std;
const int inf=1e9+7;
const int N = 5e4+5;
int a[N];
int num[N];//num[i]=多少个a[k...N-1]的值等价于a[i...N-1] (k>=i)
set<int>L,R;
int getRNum(int&i){
while(i-1>=0&&L.find(a[i-1])!=L.end()){
R.insert(a[i-1]);
--i;
num[i]=1;
while(i-1>=0&&R.find(a[i-1])!=R.end()){
--i;
num[i]=num[i+1]+1;
}
}
return num[i]*(L.size()==R.size());
}
int slove(int n){
L.clear();
R.clear();
int r=n,ans=0;
for(int i=0;i<n;++i){
L.insert(a[i]);
ans+=getRNum(r);
}
return ans;
}
int main()
{
//freopen("/home/lu/code/r.txt","r",stdin);
int n;
while(~scanf("%d",&n)){
for(int i=0;i<n;++i){
scanf("%d",&a[i]);
}
printf("%d\n",slove(n));
}
return 0;
}