(信贷风控三)申请评分卡中的数据预处理和特征衍生(下)

本文深入探讨申请评分卡中的特征选择,包括特征信息度的计算及其在评估预测能力中的作用,以及信用风险中的单变量和多变量分析。通过IV值优化分箱效果,设定IV阈值筛选变量,并利用皮尔逊相关系数处理变量相关性,同时关注变量的多重共线性问题。
摘要由CSDN通过智能技术生成

申请评分卡中的数据预处理和特征衍生(下)

在上一遍申请评分卡中的数据预处理和特征衍生(上),我们主要讲解了

  • 构建信用风险类型的特征
  • 特征分箱
  • WOE编码

也就是对应图中(数据预处理、特征构造)

 这篇文章我们主要讲解特征选择,要学习特征选择,就要学习以下的知识点

  • 特征信息度的计算和意义
  • 信用风险中的单变量分析和多变量分析

 

特征信息度的计算和意义

在申请评分卡这一块,主要以应用特征信息度为主

IV(information value)衡量的是某一个变量的信息量,公式如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

路易三十六

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值