Bert笔记

Bert成为自然语言处理的通用解决方案

序列网络模型:seq2seq网络  核心一般用rnn

传统的不足:

RNN  每一项需要前一项的数据 无法加速并行训练

Transformer可以

transformer 取代 rnn了

传统词向量不变,不会因为上下文不同而改变,这是不足,因为事实上,同一个词在不同语境中含义其实不尽相同、

self attention: 一个词在编码时不仅仅考虑该词,而是会把上下文的信息也考虑进去进行编码

self attention如何计算: 三个需要训练的矩阵:Q:要去查询的 K:等着被查的 V:实际的特征信息

特征分配和sofamax机制 Multi-head机制 经过全连接层后 ·如此堆叠多层

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

许进进

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值