线性回归

概述

1、回归与分类的区别:

  • 回归:在一个区间中求解具体值
  • 分类:得到一个分类值

2、线性回归问题:寻找一条最适合的线最好地拟合数据

3、整合成矩阵形式:高效
  h θ ( x ) = θ T X \ {h_\theta}(x) = {\theta ^T}X  hθ(x)=θTX

  • 将X扩增一列全1向量,与 θ 0 {\theta_0} θ0相乘得到偏置量

推导目标函数

1、误差( ε \varepsilon ε):真实值与预测值的差异

  • 每个样本 x i x_i xi的误差 ε ( i ) \varepsilon^{(i)} ε(i)是独立同分布,且服从均值为0,方差为 θ 2 \theta^2 θ2的高斯分布

2、似然函数的推导

  • 预测值:   y ( i ) = θ T x ( i ) + ε ( i ) \ y^{(i)}={\theta^T}{x^{(i)}}+\varepsilon^{(i)}  y(i)=θTx(i)+ε(i)(1)
  • ε ( i ) \varepsilon^{(i)} ε(i)的概率分布:   p ( ε ( i ) ) = 1 2 π σ e x p [ − ( ε ( i ) ) 2 2 σ 2 ] \ p(\varepsilon^{(i)})=\frac{1}{{\sqrt {2\pi } \sigma }}exp[-\frac{(\varepsilon^{(i)})^2}{2\sigma^2}]  p(ε(i))=2π σ1exp[2σ2(ε(i))2](2)
  • 将(2)代入(1),得:
      p ( y ( i ) ∣ x ( i ) ; θ ) = 1 2 π σ e x p [ − ( y ( i ) − θ T x ( i ) ) 2 2 σ 2 ] \ p(y^{(i)}|x^{(i)};\theta)=\frac{1}{{\sqrt {2\pi } \sigma }}exp[-\frac{(y^{(i)}-{\theta^T}{x^{(i)}})^2}{2\sigma^2}]  p(y(i)x(i);θ)=2π σ1exp[2σ2(y(i)θTx(i))2]
  • 似然函数:使预测值恰好为真实值的概率尽可能大的参数估计
      L ( θ ) = ∏ i = 1 m p ( y ( i ) ∣ x ( i ) ; θ ) \ L(\theta)=\prod\limits_{i = 1}^m p(y^{(i)}|x^{(i)};\theta)  L(θ)=i=1mp(y(i)x(i);θ)
  • 对数似然函数:将乘法转换为加法,简化计算
      l o g L ( θ ) = m l o g ( 1 2 π σ ) − 1 σ 2 ⋅ 1 2 ∑ i = 1 m ( y ( i ) − θ T x ( i ) ) 2 \ logL(\theta)=mlog(\frac{1}{{\sqrt {2\pi } \sigma }})-\frac{1}{{{\sigma ^2}}} \cdot \frac{1}{2}\sum\limits_{i = 1}^m {(y^{(i)}-{\theta^T}{x^{(i)}})^2}  logL(θ)=mlog(2π σ1)σ2121i=1m(y(i)θTx(i))2
    • 目标:使   L ( θ ) \ L(\theta)  L(θ)最大,即   l o g L ( θ ) \ logL(\theta)  logL(θ)最大
    •   m l o g ( 1 2 π σ ) \ mlog(\frac{1}{{\sqrt {2\pi } \sigma }})  mlog(2π σ1)是大于0的常数,   1 2 ∑ i = 1 m ( y ( i ) − θ T x ( i ) ) 2 \ \frac{1}{2}\sum\limits_{i = 1}^m {(y^{(i)}-{\theta^T}{x^{(i)}})^2}  21i=1m(y(i)θTx(i))2也大于0。因此   1 2 ∑ i = 1 m ( y ( i ) − θ T x ( i ) ) 2 \ \frac{1}{2}\sum\limits_{i = 1}^m {(y^{(i)}-{\theta^T}{x^{(i)}})^2}  21i=1m(y(i)θTx(i))2越小,则   l o g L ( θ ) \ logL(\theta)  logL(θ)越大
  • 目标函数:
      J ( θ ) = 1 2 ∑ i = 1 m ( y ( i ) − θ T x ( i ) ) 2 \ J(\theta)=\frac{1}{2}\sum\limits_{i = 1}^m {(y^{(i)}-{\theta^T}{x^{(i)}})^2}  J(θ)=21i=1m(y(i)θTx(i))2
    • 最小二乘形式
    • 目标:预测值是真实值的可能性越大,   L ( θ ) \ L(\theta)  L(θ)越大, J ( θ ) J(\theta) J(θ)越小

求解参数值

1、对目标函数 J ( θ ) = 1 2 ( X θ − y ) T ( X θ − y ) J(\theta)=\frac{1}{2}(X\theta-y)^T(X\theta-y) J(θ)=21(Xθy)T(Xθy)求偏导:
  ∇ θ J ( θ ) = ∇ θ [ 1 2 ( X θ − y ) T ( X θ − y ) ] = X T X θ − X T y \ {\nabla _\theta }J(\theta)={\nabla _\theta }[\frac{1}{2}(X\theta-y)^T(X\theta-y)]=X^TX\theta-X^Ty  θJ(θ)=θ[21(Xθy)T(Xθy)]=XTXθXTy
2、求 J ( θ ) J(\theta) J(θ)的极小值:

  •   ∇ θ J ( θ ) = 0 \ {\nabla _\theta }J(\theta)=0  θJ(θ)=0,求解 θ \theta θ
  • θ = ( X T X ) − 1 X T y \theta=(X^TX)^{-1}X^Ty θ=(XTX)1XTy

3、很多情况下, θ \theta θ无法直接求解,线性回归是特例

评估方法

最常用的评估项:
  R 2 = 1 − ∑ i = 1 m ( y i ∧ − y i ) 2 ∑ i = 1 m ( y i − y i ‾ ) 2 \ R^2=1-\frac{\sum\limits_{i = 1}^m {(\mathop {{y_i}}\limits^ \wedge - {y_i})^2 }}{\sum\limits_{i = 1}^m {({y_i} - \overline {{y_i}} )^2 }}  R2=1i=1m(yiyi)2i=1m(yiyi)2

  • ∑ i = 1 m ( y i ∧ − y i ) 2 \sum\limits_{i = 1}^m {(\mathop {{y_i}}\limits^ \wedge - {y_i})^2 } i=1m(yiyi)2:残差平方和
  • ∑ i = 1 m ( y i − y i ‾ ) 2 \sum\limits_{i = 1}^m {({y_i} - \overline {{y_i}} )^2 } i=1m(yiyi)2:类似方差项
  • R 2 R^2 R2越接近1,模型拟合得越好
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值