神经网络优化(1)之梯度截断

梯度截断

1.出现原因

由于进行反向传播时,进行每一层的梯度计算,假设梯度都是比较大的值,计算到第一层的梯度时,会呈指数级增长(反向传播,从后往前,有相乘的关系),那么更新完的参数值也会很大,越来越大,就会产生梯度爆炸的现象,找不到最优解。
所以,提出了梯度截断的方法。

2.解决方法

①按值截断

按值截断是比较简单粗暴的方法,由于梯度太大会产生梯度爆炸的现象,太小会产生梯度消失的现象(参数不更新),所以为梯度提供一个范围[a,b],

  • 如果梯度大于b,就把它设置为b;
  • 如果梯度小于a,就把它设置为a;
  • 若在此区间,不做变化

pytorch下的使用

torch.nn.utils.clip_grad_value_(model.parameters(), value)

注:value就是b,a就直接默认为-value

②按模截断

在这里插入图片描述

为梯度g设置一个最大阈值threshold,用梯度的二范数与该阈值做比较;

  • 若大于阈值,则对其进行压缩,计算公式如图所示
  • 否则,不改变梯度

二范数:就是向量的每个方向上的值平方求和再开方

pytorch使用

torch.nn.utils.clip_grad_norm_(model.parameters(), threshold)

注:threshold即为阈值

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值