梯度爆炸解决方案——梯度截断(gradient clip norm)

本文介绍PyTorch中梯度裁剪的方法,包括clip_grad_norm_和clip_grad_value_函数的使用,以及如何在训练循环中正确实施梯度裁剪,以避免梯度爆炸或消失。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果梯度超过阈值,那么就截断,将梯度变为阈值

from torch.nn.utils import clip_grad_norm

pytorch源码

默认为l2(norm type)范数,对网络所有参数求l2范数,和最大梯度阈值相比,如果clip_coef<1,范数大于阈值,则所有梯度值乘以系数。

使用:

optimizer.zero_grad()        
loss, hidden = model(data, hidden, targets)
loss.backward()

torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()

python - How to properly do gradient clipping in pytorch? - Stack Overflow  https://stackoverflow.com/questions/54716377/how-to-properly-do-gradient-clipping-in-pytorch

但是,clip_grad_norm还不够狠,有时候失效,这个时候更狠的就出来了:

torch.nn.utils.clip_grad_value_(model.parameters(), number)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值