在数据驱动决策的今天,数据分析已经成为各行各业不可或缺的技能。作为数据分析爱好者,我们不仅要掌握理论知识,更要通过实战来提升自己的技能。本文将带大家进行一次Python实战,分析京东商品的价格差异,特别是自营店铺与非自营店铺之间的价格对比。
一、项目背景与目的
在电商平台上,同样的商品在不同店铺的价格可能存在差异。消费者往往希望找到性价比最高的商品。本次分析旨在通过Python爬虫技术获取京东平台上某类商品的信息,并对比自营店铺与非自营店铺的价格,为消费者提供购物参考。
二、数据获取
- 确定分析方向:
- 分析自营店铺与非自营店铺的价格差异。
- 爬取数据:
- 使用Python的requests库和BeautifulSoup库编写爬虫,从京东平台上输入搜索关键字,定向爬取该关键字商品的信息。
- 由于京东平台有反爬虫机制,需要合理设置请求间隔,避免频繁请求导致IP被封禁。
- 爬取的信息包括商品名称、价格、店铺名称、评价数量等。
- 数据存储:
- 将爬取的数据存储到CSV文件中,方便后续的数据处理和分析。
三、数据处理与分析
- 数据清洗:
- 使用Pandas库读取CSV文件,检查数据中的重复值、空值等。
- 删除重复值和空值,确保数据的准确性和完整性。
- 数据转换:
- 将评价数量中的“万+”转换为具体数值,方便后续分析。
- 根据店铺名称将店铺分为自营店铺、旗舰店、专营店和其他类型。
- 统计分析:
- 统计不同类型的店铺数量,分析各类店铺的分布情况。
- 计算各类店铺的平均价格,对比自营店铺与非自营店铺的价格差异。
- 可视化分析:
- 使用Matplotlib和Seaborn库绘制各类店铺数量的柱状图、百分比饼图和商品数量的条形图。
- 通过图表直观地展示各类店铺的分布情况和价格差异。
四、实战代码示例
以下是部分代码示例,展示了如何使用Python进行数据处理和分析:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# 读取数据
df = pd.read_csv('jd_products.csv', encoding='gbk')
# 数据清洗
df.drop_duplicates(inplace=True) # 删除重复值
df.dropna(inplace=True) # 删除空值
# 数据转换
def comment_p(x):
x = x.replace('+', '')
if '万' in x:
x = x.replace('万', '')
x = float(x) * 10000
return x
df['new_comment'] = df['comment'].apply(lambda x: comment_p(x)).astype('int')
def new_group(frame):
new_group = []
for i in range(len(frame)):
if '自营' in frame.iloc[i, 4]:
new_group.append('京东自营')
elif '旗舰店' in frame.iloc[i, 4]:
new_group.append('旗舰店')
elif '专营店' in frame.iloc[i, 4]:
new_group.append('专营店')
else:
new_group.append('其它')
frame['newgroup'] = new_group
new_group(df)
# 统计分析
shop_counts = df['shopname'].nunique() # 统计店铺数量
print(f'商品信息中共有: {shop_counts} 家店铺')
# 可视化分析
sns.set(palette="summer", font='Microsoft YaHei', font_scale=1.2)
plt.figure(figsize=(12, 8))
s_group = df.groupby('newgroup').shopname.nunique().reset_index(name='counts')
s_group.sort_values(by='counts', ascending=False, inplace=True)
sns.barplot(x='counts', y='newgroup', data=s_group)
plt.title('店铺数量', loc='left', fontsize=20)
plt.show()
五、分析结果与结论
通过本次实战分析,我们得出了以下结论:
- 店铺类型分布:
- 京东自营店铺数量较少,但占据了一定的市场份额。
- 旗舰店和专营店数量较多,但竞争激烈。
- 其他类型店铺数量众多,但规模较小。
- 价格差异:
- 自营店铺的价格普遍较高,但商品质量和服务有保障。
- 非自营店铺的价格相对较低,但存在商品质量和服务参差不齐的情况。
六、总结与展望
本次实战分析通过Python爬虫技术获取了京东商品信息,并对比了自营店铺与非自营店铺的价格差异。通过数据分析,我们得出了店铺类型分布和价格差异的结论。未来,我们可以进一步拓展分析维度,如分析不同品牌、不同类别的商品价格差异,为消费者提供更全面的购物参考。
希望本次实战分析能够帮助数据分析爱好者们提升技能,同时也为消费者提供有价值的购物建议。