微积分入门(4)

上一次我们讲了如何计算地球体积以及如何计算圆周率,以及一个微分自身还是自身的函数。

这一次,我们将讲解一下第一类换元法

因为以后微积分入门系列的文章会越来越复杂:一个知识我们会分为三部分:

  • 概念阐述以及理论证明
  • 公式总结以及定理得出
  • 应用示例

如果概念阐述以及理论证明不想看的话,可以跳过,感兴趣的同学也可以查阅更多资料。

此外,本系列文章不能保证学术性,致力于通俗易懂的讲解微积分。

积分、微分进阶

对于更多的公式,这里就不赘述了,直接摆出来:

积分公式大全:

∫ d x 1 + x 2 = arctan ⁡ x + C \int \frac{dx}{1+x^2}=\arctan x + C 1+x2dx=arctanx+C
∫ d x 1 − x 2 = arcsin ⁡ x + C \int {\frac{dx}{\sqrt{1-x^2}}}=\arcsin x +C 1x2 dx=arcsinx+C
∫ sin ⁡ x = − cos ⁡ x + C \int \sin x = -\cos x+C sinx=cosx+C
∫ cos ⁡ x = sin ⁡ x + C \int \cos x=\sin x + C cosx=sinx+C
∫ tan ⁡ x = − ln ⁡ ∣ cos ⁡ x ∣ + C \int \tan x = - \ln|\cos x| + C tanx=lncosx+C
∫ cot ⁡ x = ln ⁡ ∣ sin ⁡ x ∣ + C \int \cot x = \ln|\sin x|+C cotx=lnsinx+C
∫ csc ⁡ x = ln ⁡ ∣ tan ⁡ x 2 ∣ + C \int \csc x = \ln |\tan \frac{x}{2}| + C cscx=lntan2x+C
∫ sec ⁡ x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C \int \sec x = \ln |\sec x + \tan x| + C secx=lnsecx+tanx+C
∫ sec ⁡ 2 x = tan ⁡ x + C \int \sec^2 x=\tan x +C sec2x=tanx+C
∫ csc ⁡ 2 x = − cot ⁡ x + C \int \csc^2 x = -\cot x +C csc2x=cotx+C
$$

\int ax=\frac{ax}{\ln|a|} + C
$$

第一类换元法

虽然我们可以使用现用的公式计算较为简单的微积分。但是遇到复合函数的积分,传统的公式也无能为力,比如以下定积分:
∫ sin ⁡ p k a + x \int \sin pk^{a+x} sinpka+x

你能看出他有哪些复合函数么?

首先是 y = sin ⁡ v y=\sin v y=sinv,然后是 v = p u v=pu v=pu u = k a + x u=k^{a+x} u=ka+x

概念阐述以及理论证明

假设我们要求 ∫ f ( g ( x ) )   d x \int f(g(x)) \ dx f(g(x)) dx,但我们只会计算 ∫ f ( x ) \int f(x) f(x)

u = g ( x ) u=g(x) u=g(x),将 u u u 代入,得到:
∫ f ( u )   d x \int f(u) \ dx f(u) dx

但这个等式不成立,展开后将原式带入,有:
∫ f ( g ( x ) )   d g ( x ) = ∫ f ( g ( x ) ) g ′ ( x )   d x \int f(g(x))\ dg(x)=\int f(g(x))g'(x) \ dx f(g(x)) dg(x)=f(g(x))g(x) dx

公式总结以及定理得出

交换等式两边,我们就得到了第一类换元法的公式:
∫ f ( g ( x ) ) g ′ ( x )   d x = ∫ f ( g ( x ) )   d g ( x ) \int f(g(x))g'(x) \ dx=\int f(g(x))\ dg(x) f(g(x))g(x) dx=f(g(x)) dg(x)

应用示例

例1:求 ∫ e 2 x + 1   d x \int e^{2x+1} \ dx e2x+1 dx

这是一个对复合函数的积分,我们可以令 u = 2 x + 1 u=2x+1 u=2x+1,并使用第一类换元法。

为了使计算简便,我们需要求出函数 u u u 的微分,因为我们知道,两个函数的和的微分,等于一个函数的微分加另一个函数的微分 ( f + g ) = f ′ + g ′ (f+g)=f'+g' (f+g)=f+g,所以 u u u 的微分是:

( 2 x + 1 ) ′ = 2 x ′ + 1 ′ = 2 + 0 = 2 (2x+1)'=2x'+1'=2+0=2 (2x+1)=2x+1=2+0=2
我们等量代换,得:
1 2 ∫ e u 2   d x \frac{1}{2}\int e^{u} 2 \ dx 21eu2 dx
代入第一换元法的公式,得:
1 2 ∫ e u   d ( 2 x ) \frac{1}{2}\int e^u \ d(2x) 21eu d(2x)

为了方便计算,我们可以将 2 x 2x 2x 改成与它的微分相同的表达式( 2 x + 1 2x+1 2x+1,我们可以得到):
1 2 ∫ e u   d ( u ) \frac{1}{2}\int e^u\ d(u) 21eu d(u)

这时,我们就可以求解了!之前我们计算过指数函数( e x e^x ex)的微分,我们也可以拿它求 e x e^x ex 的积分!

因为:
( e x ) ′ = e x (e^x)'=e^x (ex)=ex
两边取积分:
e x = ∫ e x e^x=\int e^x ex=ex

还要加一个常数 C C C

将得到的公式代入原式:
1 2 e u + C = e u 2 + C \frac{1}{2}e^u+C=\frac{e^u}{2}+C 21eu+C=2eu+C
回代 u u u
e 2 x + 1 2 + C \frac{e^{2x+1}}{2}+C 2e2x+1+C
所以,答案就是 e 2 x + 1 2 + C \frac{e^{2x+1}}{2}+C 2e2x+1+C

我们得到了一个公式:
∫ f ( a x + b )   d x = 1 a f ( a x + b )   d ( a x + b ) \int f(ax+b) \ dx= \frac{1}{a}f(ax+b)\ d(ax+b) f(ax+b) dx=a1f(ax+b) d(ax+b)

例2:求 ∫ 2 x e x 2 \int2xe^{x^2} 2xex2

乍一看,有三层复合函数,用普通求解方法,坑定是解不出来的。

但是,我们可以发现 ∫ 2 x = x 2 \int 2x=x^2 2x=x2!我们可以设 u u u 2 x 2x 2x,所以,用第一类换元法,就得到了:
∫ e u   d ( ∫ 2 x ) = ∫ e u   d u \int e^{u} \ d(\int2x)=\int e^u \ du eu d(2x)=eu du
使用前面讲过的公式,可以得到:
e u + C e^u+C eu+C
回代:
e x 2 + C e^{x^2}+C ex2+C
对于第一类换元法,如果想了解更多关于第一类换元法,可以自己去了解

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值