Some functions

Specific Functions

Staircase Function

Definition:

If g ( x ) g(x) g(x) is defined at [ a , b ] [a,b] [a,b], which is the union of finite intervals having no intersection with each other and in each intersection it’s a constant function, then it’s a staircase function.


Properties:

1, Staircase function is definitely Riemann integrable.

Gamma Function

Definition:
Γ ( p + 1 ) = ∫ 0 + ∞ t p e − t d t . \Gamma(p+1)=\int_0^{+\infty}t^pe^{-t}\text dt. Γ(p+1)=0+tpetdt.
Properties:

Γ ( 1 ) = 1 , Γ ( s + 1 ) = s Γ ( s ) , ln ⁡ Γ  is convex . \Gamma(1)=1,\Gamma(s+1)=s\Gamma(s),\ln\Gamma\text{ is convex}. Γ(1)=1,Γ(s+1)=sΓ(s),lnΓ is convex.

These 3 conditions uniquely determines this function.

And we know that Γ ( n ) = ( n − 1 ) ! \Gamma(n)=(n-1)! Γ(n)=(n1)!

Γ ( 1 2 ) = π . \Gamma(\frac 12)=\sqrt{\pi}. Γ(21)=π .

Beta Function

B ( a , b ) = Γ ( a ) Γ ( b ) Γ ( a + b ) . B(a,b)=\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}. B(a,b)=Γ(a+b)Γ(a)Γ(b).

Check Function

Definition:
δ i , j = { 0 , i ≠ j . 1 , i = j . \delta_{i,j}=\begin{cases} 0,i\neq j.\\ 1,i=j. \end{cases} δi,j={0,i=j.1,i=j.

Class of Functions

Functions of Bounded Variation

Definition:

∀  partition  p  at  [ a , b ] , V p ( f ) : = ∑ ∣ f ( x i ) − f ( x i − 1 ) ∣ . \forall\text{ partition }p\text{ at }[a,b],V_p(f):=\sum|f(x_i)-f(x_{i-1})|.  partition p at [a,b],Vp(f):=f(xi)f(xi1)∣.

f f f is of bounded variation at [ a , b ] [a,b] [a,b], if sup ⁡ V p ( f ) ∃ \sup V_p(f)\exist supVp(f), set down as total variation V ( f ) V(f) V(f).

Properties:

Monotonic functions are of bounded variation.

f f f is of bounded variation, if f ′ f' f is bounded.

f f f is bounded, if it is of bounded variation.

V ( f ) = 0. ⇔ f ≡ C V(f)=0.\Leftrightarrow f\equiv C V(f)=0.fC.

V ( f ± g ) ⩽ V ( f ) + V ( g ) . V(f\pm g)\leqslant V(f)+V(g). V(f±g)V(f)+V(g).

V ( f g ) ⩽ sup ⁡ ∣ f ∣ V ( g ) + sup ⁡ ∣ g ∣ V ( f ) . V(fg)\leqslant\sup|f|V(g)+\sup|g| V(f). V(fg)supfV(g)+supgV(f).

V ( 1 / f ) ⩽ V ( f ) / m 2 , ∣ f ∣ ⩾ m > 0. V(1/f)\leqslant V(f)/m^2,|f|\geqslant m>0. V(1/f)V(f)/m2,fm>0.

V x : = V f  at  [ a , x ] V_x:=V_f\text{ at }[a,x] Vx:=Vf at [a,x].

Obviously, V x V_x Vx is increasing.

And consider a refinement p ∗ p^* p of partition p , V p ( f ) ⩽ V p ∗ ( f ) p,V_p(f)\leqslant V_{p^*}(f) p,Vp(f)Vp(f).

Consider interval U 0 − ( x 0 , δ ) U_0^-(x_0,\delta) U0(x0,δ).

∀  partition  p  at  ( x 0 − δ , x 0 ) , V f ( p ) ⩾ ∣ f ( x 0 ) − f ( x 0 − δ ) ∣ \forall\text{ partition }p\text{ at }(x_0-\delta,x_0),V_f(p)\geqslant|f(x_0)-f(x_0-\delta)|  partition p at (x0δ,x0),Vf(p)f(x0)f(x0δ), because the right part is produced by a partition having only endpoints.

Thus V p ( f ) δ − ∣ f ( x 0 ) − f ( x 0 − δ ) ∣ δ \frac{V_p(f)}{\delta}-\frac{|f(x_0)-f(x_0-\delta)|}{\delta} δVp(f)δf(x0)f(x0δ) .

Consider δ → 0 \delta\rightarrow0 δ0, you know D ( x ) = V x − f ( x ) D(x)=V_x-f(x) D(x)=Vxf(x) is increasing.

Then any function of bounded variation can be decomposed as the difference of two increasing functions.

Thus it’s definitely Riemann integrable.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值