Passing of Integral between Sequence and Limit

Default

{ f n } → f . \{f_n\}\to f. {fn}f.

Examples

1,
f n , f ∈ R [ a , b ] , ∫ f ≠ lim ⁡ n → + ∞ ∫ f n .   f n : = x 1 + n ( 1 − x 2 ) n , x ∈ [ 0 , 1 ] . f_n,f\in R[a,b],\int f\neq\lim_{n\to+\infty}\int f_n.\\ \ \\ f_n:=\frac{x}{1+n}(1-x^2)^n,x\in[0,1]. fn,fR[a,b],f=n+limfn. fn:=1+nx(1x2)n,x[0,1].
No no no, it’s wrong.

2,
f n , f ∈ R [ a , b ] , ∫ f = lim ⁡ n → + ∞ ∫ f n , { f n } ⇉̸ f . f_n,f\in R[a,b],\int f=\lim_{n\to+\infty}\int f_n,\{f_n\}\not\rightrightarrows f. fn,fR[a,b],f=n+limfn,{fn}f.
This says uniform convergence is not necessary.

Monotonic Convergence Theorem of Integral

By Levi.

Content:
{ f n } ⩽ M , f n ⩾ f n + 1 , f n → 0.      ⟹    lim inf ⁡ n → + ∞ ∫ a b f n = 0. \{f_n\}\leqslant M,f_n\geqslant f_{n+1},f_n\to 0.\\ \ \\ \implies\liminf\limits_{n\to+\infty}\int_a^bf_n=0. {fn}M,fnfn+1,fn0. n+liminfabfn=0.

As for { f n } \{f_n\} {fn} n n n-increasing, it has similar conclusions.

And for integrable, you can figure out its integral is exactly 0 0 0.

Proof

Idea: Make a monotonic and continuous function sequence fitting to Dini theorem, to control the lower integral of f n f_n fn.

Control Convergence Theorem of Integral

By Lebesgue.

Content:
{ f n } ⊆ R [ a , b ] , f n → f ∈ R [ a , b ] , ∣ f n ∣ ⩽ M .    ⟹    lim ⁡ ∫ a b ∣ f n − f ∣ = 0. \{f_n\}\subseteq R[a,b],f_n\to f\in R[a,b],|f_n|\leqslant M.\implies\lim\int_a^b|f_n-f|=0. {fn}R[a,b],fnfR[a,b],fnM.limabfnf=0.
Proof:

Idea: g n : = ∣ f n − f ∣ g_n:=|f_n-f| gn:=fnf, use monotonic sequence g n ~ : = sup ⁡ k ⩾ n g k \widetilde{g_n}:=\sup_{k\geqslant n}g_k gn :=supkngk, fitting to Monotonic Convergence Theorem’s extrapolation, to control g n g_n gn.

Fatou Theorem

I haven’t figured out a proper name of pure math excluding name.

Content:
{ f n } ⊆ R [ a , b ] , 0 ⩽ f n , f n → f ∈ R [ a , b ] .      ⟹    lim inf ⁡ n → + ∞ ∫ a b f n ⩾ ∫ a b f . \{f_n\}\subseteq R[a,b],0\leqslant f_{n},f_n\to f\in R[a,b].\\ \ \\ \implies\liminf\limits_{n\to+\infty}\int_a^bf_n\geqslant\int_a^bf. {fn}R[a,b],0fn,fnfR[a,b]. n+liminfabfnabf.
Proof:

Essence: Finally you can only have an infinitesimal interval of f n f_n fn out of ε \varepsilon ε-vicinity of f f f, because it’s a point-wisely convergent.

Idea: similar to above two?

Its real form:
lim inf ⁡ n → + ∞ ∫ a b f n ⩾ ∫ a b lim inf ⁡ n → + ∞ f . \liminf\limits_{n\to+\infty}\int_a^bf_n\geqslant\int_a^b\liminf\limits_{n\to+\infty}f. n+liminfabfnabn+liminff.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值