机器学习的分类、回归、聚类问题

本文详细介绍了机器学习中的分类、回归和聚类问题。分类问题涉及决策树、贝叶斯、神经网络、K-近邻、支持向量机等算法;回归问题涵盖线性回归、多项式回归和逻辑回归;聚类问题则是无监督学习的一种,旨在发现数据的内在结构。每种方法都有其特点和适用场景。
摘要由CSDN通过智能技术生成

分类、回归问题都是监督学习,本质都是对输入做出预测,都要建立映射关系。分类问题输出的是物体所属的类别(瓜是好瓜吗),回归问题输出的是数值(瓜会卖到多少钱)。聚类是无监督学习

一.分类问题

分类问题输出的是物体所属的类别,即输出结果是:“好瓜/坏瓜”、“晴天/阴天/雨天”...,分类问题输出的值是定性的,目的是为了寻找决策边界。单一的分类方法主要包括:决策树、贝叶斯、人工神经网络、K-近邻、支持向量机和基于关联规则的分类等;另还有组合单一方法的集成学习算法,如Bagging、Boosting等。

1.决策树

通过对历史数据进行测算,实现对新数据进行分类和预测。例如,我们要对“这是好瓜吗?”进行决策,就要进行一系列的判断或”子决策“:先看“是什么颜色”,再“根蒂是什么形态”,再判断“敲起来是什么声音”,最后得出决策:这是个好瓜/坏瓜。

 一般的,一棵决策树包括一个根节点、若干个内部节点(根蒂、敲声、色泽)和若干个叶节点(好/坏瓜)。其中,叶节点对应决策结果,其他每个节点对应一个属性测试;每个节点包含的样本集合根据属性测试的结果被划分至子节点中;根节点包含样本全集,子节点样本集数量逐渐减少;根节点到每个叶结点的路径对应了一个判定测试序列。其基本流程遵循“分而治之”策略,其生成是一个递归过程。

关于决策树算法详细介绍可参考文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值