吴恩达机器学习——正规方程

        对于某些线性回归的问题,除了用梯度下降,也可以用正规方程的方法。如:

       对于上图,如果要求代价函数曲线的最低点,由高等数学的知识,可以令\frac{dJ(\theta )}{d\theta }=0, 而当\theta是向量时,可以令\frac{\partial J(\theta _{j})}{\partial \theta _{j}}=0。假设我们的训练集特征矩阵为X(包含了\chi _{0}=1),并且训练集结果为向量y,则利用正规方程解出向量\theta =(X^{T}X)^{-1}X^{T}y=X^{-1}(X^{T})^{-1}X^{T}y=X^{-1}y。其中T代表矩阵的转置,上标-1代表矩阵的逆。

       以下数据为例:

       即:

       由正规方程的方法,有

 

        由于正规方程的求解过程涉及矩阵的逆运算,所以对于不可逆的矩阵,不能用正规方程的方法。

        梯度下降与正规方程的比较:

       这里面矩阵的逆运算的时间复杂度为O(n^{3})主要是因为,设X为n\times n的矩阵,则X^{T}X的运算需要两个for循环嵌套,而求逆矩阵又需要一个for循环,所以时间复杂度为O(n^{3})

       总结:只要特征变量的数目并不大,标准方程是一个很好的计算参数\theta的替代方法。具体地说,只要特征变量数量小于一万,通常使用标准方程法,而不使用梯度下降法。

 

参考资料:

吴恩达机器学习——Normal Equation

斯坦福大学2014(吴恩达)机器学习教程中文笔记——黄海广

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值