CINTA作业8:CRT

本文通过具体实例介绍了如何运用中国剩余定理(CRT)解决模数乘积的问题,涉及费马小定理和同余性质。讨论了在不同模数下求解逆元和指数的计算,最后将这些理论应用于实际问题,求解模运算的结果。
摘要由CSDN通过智能技术生成

解:注意到221=13*17,

先计算2000 mod 221.:

即40*50 mod 13*17,根据中国剩余定理的代数版本可以得到:

40<->(1,6), 50<->(11,16).

那么(1,6)*(11,16)=( [1*11 mod 13] , [6*16 mod 17] ) = (11,11)

即可以得到原式=11^2019 mod 13*17

=( [11^2019 mod 13] , [11^2019 mod 17] ) 

再根据费马小定理可以得到:( [11^3 mod 13] , [11^3 mod 17] ) = (5,5).

注意到,(5,5)<->5,所以

=5.

解:设a=8,b=3,p=11,q=19,n=pq=209.

   1     0     19

   0     1     11

   1     -1     8

   -1    2      3

   3     -5     2

  -4     7      1

可求的p^-1=7,q^-1=7.

y=8*19*7+3*11*7=1295

所以x=1295%209=41.

解:由中国剩余定理推广,得:

设a1=1,a2=2,a3=3,a4=4,M=5*7*9*11=3465.

对应的b1=M/5=693,b2=M/7=495,b3=M/9=385,b4=M/11=315.

则可以求得对应的逆元分别为:2,3,4,8.

那么 x=(1*693*2+2*495*3+3*385*4+4*315*8)mod3465=1731.

 

解:参考斌头剩余定理:

在这里,x模mn的结果就是该定理的括号部分,即

代入,可以得到原题中x模mn的结果为:

a*(n^(m-1)+m^(n-1))

解:由费马小定理,有:

p^(q-1) = 1 mod q

q^(p-1) = 1 mod p

那么:p^(q-1) + q^(p-1) = 1 mod q

p^(q-1) + q^(p-1) = 1 mod p

由同余性质可以得到:p^(q-1) + q^(p-1) = 1 mod pq

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值