CINTA作业九:QR

这篇博客探讨了模p二次剩余(QR)的相关数学理论,包括命题和定理的证明。通过群论方法证明了定理11.1,并展示了如何利用映射和同态概念。此外,还证明了所有生成元都是模p的二次非剩余,以及关于QR的性质和乘法规则。
摘要由CSDN通过智能技术生成

1.证明命题 11.2

封闭性:

\forall a,b\in QR_p,\exists x,y\in Z

x^2\equiv a(mod p),y^2\equiv b(mod p)

a\times b\equiv x^2\times y^2=(x\times y)^2,故a\times b\in QR_p

结合律:

\forall a,b,c\in QR_p,\exists x,y,z\in Z

x^2\equiv a(mod p),y^2\equiv b(mod p),z^2\equiv c(modp)

(a\times b)\times c\equiv x^2\times y^2\times z^2=a\times (b\times c)

单位元:1

逆元:\forall a,b\in QR_p

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值