CINTA作业九:QR

1、证明:

 (1)封闭性:

对于\foralla,b∈Q^{}R_{p},有a \ast b =QR∈Q^{}R_{p}

(2)结合律:

对于\foralla,b,c∈Q^{}R_{p},有:

\left\{\begin{matrix} a=x^{2}\mod p & & \\ b=y^{2}\mod p& & \\ c=z^{2}\mod p & & \end{matrix}\right.

(a*b)*c= x^{2}y^{2}z^{2}  mod p = a*(b*c)

(3)单位元:显然,单位元为1

(4)逆元:

对于\foralla∈QR_{p},有a = x^{2} mod  p

a*(x^{2})^{-1}= 1 mod  p

a^{-1}= (x^{2})^{-1} mod  p =(x^{-1})^{2} mod p,所以存在逆元。

 

 2、用群论的方法证明:

 构造Z^{*}_{p}QR_{p}的映射\phi\forall a\in Z^{*}_{p},有a\rightarrow a^{2}

对于\forall a,b\in Z^{*}_{p}\phi (a\cdot b)=(ab)^{2}=a^{2}b^{2}=\phi (a)\circ \phi (b)

所以映射\phi为同态映射

QR_{p}的单位元为1,Ker\phi=1,p-1=\mathbb{K},为Z^{*}_{p}的正规子群。

则有:Z^{*}_{p}\rightarrow Z^{*}_{p}/\mathbb{K}

\left | QR_{p} \right | = \left | Z^{*}_{p}/\mathbb{K} \right | = \left | Z^{*}_{p} \right |/\left | \mathbb{K} \right |  = (p-1)/2\left | QNR \right |=(p-1)/2

3、证明:

 \psi (a\cdot b)=(\frac{ab}{p})=(\frac{a}{p})(\frac{b}{p})=\psi (a)\circ \psi (b)

所以映射\psi是一种同态映射。

\forall a\in Z^{*}_{p},当a为QR时\psi (a)=(\frac{a}{p})=1,当a为QNR时\psi (a)=(\frac{a}{p})=-1

故映射\psi为一种满射。

所以原命题得证。

4、证明:

 5、证明:

(1)由a\equiv b(mod \ p),可得a与b模p同余

即若有a=x^{2}\;mod\;p,则有b=x^{2}\;mod\;p

所以(\frac{a}{p})=(\frac{b}{p})得证。

(2)由 

原命题得证。

(3) 由命题11.3可得:当a为QR时,a^{2}仍为QR

当a为QNR时,a^{2}为QR

(\frac{a^{2}}{p})=1 得证。

6、证明:

 (1)若p\equiv 1\;mod\;4,即p=4k+1,k=0,1,2,3.....

 由欧拉准则可得:

(\frac{-1}{p})=(-1)^{(4k+1-1)/2}=(-1)^{2k}=1\;(mod\;p)

(2)若p\equiv -1(mod\;4),即p=4k-1,k=1,2,3......

由欧拉准则可得:

(\frac{-1}{p})=(-1)^{(4k-1-1)/2}=(-1)^{2k-1}=-1\;(mod\;p)

所以原命题得证。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值