CINTA作业作业九:QR

1. 证明命题11.2

证:用 Q R p QR_p QRp 表示模 p p p Q R QR QR 的集合, Q R p QR_p QRp 在乘法上成群。

(1) 封闭性:
∀ a , b ∈ Q R p , a ∗ b = Q R ∈ Q R p \forall a,b \in QR_p,a*b =QR \in QR_p a,bQRp,ab=QRQRp
(2) 结合律:
∀ a , b , c ∈ Q R p , 有 { a   ≡ x 1 2 ( m o d   p ) y   ≡ x 2 2 ( m o d   p ) z   ≡ x 3 2 ( m o d   p ) \forall a,b,c \in QR_p,有\left\{ \begin{aligned} a \ & ≡& x_1^2(mod\ p)\\ y \ & ≡& x_2^2(mod\ p) \\ z \ & ≡& x_3^2(mod\ p) \end{aligned} \right. a,b,cQRp,a y z x12(mod p)x22(mod p)x32(mod p)
( a ∗ b ) ∗ c = x 1 2 x 2 2 x 3 2 ( m o d   p ) = a ∗ ( b ∗ c ) (a*b)*c=x_1^2x_2^2x_3^2(mod\ p)=a*(b*c) (ab)c=x12x22x32(mod p)=a(bc)
(3) 单位元:
乘法单位元:1
(4) 逆元:
p=1时,显然 Q R p QR_p QRp满足群的定理

p≥3时,假设存在逆元 a − 1 a^{-1} a1

由费马小定理有:
a p − 1 ≡ 1 ( m o d   p ) a^{p-1}≡1(mod\ p) ap11(mod p)
a a − 1 ≡ 1 ( m o d   p ) aa^{-1}≡1(mod\ p) aa11(mod p)
a − 1 ≡ a p − 2 a^{-1}≡a^{p-2} a1ap2

故逆元存在


2.使用群论的方法证明定理11.1

证:设 p p p 为奇素数,则刚好存在 ( p − 1 ) / 2 (p − 1)/2 (p1)/2 个模 p 的 Q R QR QR ( p − 1 ) / 2 (p − 1)/2 (p1)/2 个模 p p p Q N R QNR QNR


3.定义映射 ψ : Z p ∗ → { ± 1 } 为 ψ ( a ) = ( a p ) , ∀ a ∈ Z p ∗ 。 ψ : Z^*_p → \{±1\} 为 ψ(a) = \left( \frac a p\right),∀a ∈ Z^*_p。 ψ:Zp{±1}ψ(a)=(pa)aZp请证明这是一个满同态

ψ ( a ⋅ b ) = ( a ⋅ b p ) = ( a p ) ⋅ ( b p ) = ψ ( a ) ⋅ ψ ( b ) ψ(a⋅b)= \left( \frac {a⋅b} p\right) = \left( \frac a p\right)⋅ \left( \frac b p\right)=ψ(a)⋅ψ(b) ψ(ab)=(pab)=(pa)(pb)=ψ(a)ψ(b)
所以 ψ \psi ψ是群同态

∀ a ∈ Z p ∗ , 若 a 为 Q R , 则 ψ ( a ) = 1 ; 若 a 为 Q N R , 则 ψ ( a ) = − 1 \forall a \in Z_p^*,若a为QR,则\psi(a)=1;若a为QNR,则\psi(a)=-1 aZp,aQRψ(a)=1;aQNRψ(a)=1
ψ \psi ψ为满射

综上 ψ \psi ψ是一个满同态


4.设 p 是奇素数,请证明 Z p ∗ Z^*_p Zp 的所有生成元都是模 p 的二次非剩余

∀ a 为 Z p ∗ d 的 生 成 元 , 设 m 是 模 p 的 Q R , n 是 模 p 的 Q N R , ∃ p , q ∈ Z , a p = m , a q = n \forall a为 Z_p^*d的生成元,设m是模p的QR,n是模p的QNR,\exists p,q \in Z,a^p=m,a^q=n aZpd,mpQRnpQNR,p,qZ,ap=m,aq=n

当 生 成 元 a 为 模 p 的 Q R 时 , ∀ z ∈ Z , a z 为 Q R 当生成元a为模p的QR时, \forall z \in Z,a^z为QR apQR,zZ,azQR

当 生 成 元 a 为 模 p 的 Q N R 时 , ∀ z ∈ Z , a 2 z 为 Q R , a 2 z + 1 为 Q R 当生成元a为模p的QNR时, \forall z \in Z,a^{2z}为QR,a^{2z+1}为QR apQNR,zZ,a2zQR,a2z+1QR

因 为 a p = m , a q = n , 所 以 a 为 Q N R 因为a^p=m,a^q=n,所以a为QNR ap=m,aq=naQNR

可 得 Z 的 ∗ 所 有 生 成 元 都 是 模 p 的 Q N R 可得Z^*_ 的所有生成元都是模 p 的QNR ZpQNR


5. 证明命题11.4

(1)
当a为QR时,有 a ≡ b ≡ x 2 ( m o d   p ) , a≡b≡x^2 (mod\ p), abx2(mod p),此时b为QR , ( a p ) = ( b p ) = 1 ,\left( \frac a p\right)=\left( \frac b p\right)=1 ,(pa)=(pb)=1

当a为QNR时,没有 a ≡ b ≡ x 2 ( m o d   p ) , a≡b≡x^2 (mod\ p), abx2(mod p)此时b为QNR,有 ( a p ) = ( b p ) = − 1 \left( \frac a p\right)=\left( \frac b p\right)=-1 (pa)=(pb)=1

a ≡ b ( m o d   p ) , ( a p ) = ( b p ) a≡b(mod\ p),\left( \frac a p\right)=\left( \frac b p\right) ab(mod p),(pa)=(pb)成立

(2)
当a,b为QR时,ab为QR,有 ( a p ) ( b p ) = 1 ⋅ 1 = 1 = ( a b p ) \left( \frac a p\right)\left( \frac b p\right) = 1·1 = 1 = \left( \frac {ab} p\right) (pa)(pb)=11=1=(pab)

当a,b为QNR时,ab为QR,有 ( a p ) ( b p ) = ( − 1 ) ⋅ ( − 1 ) = 1 = ( a b p ) \left( \frac a p\right)\left( \frac b p\right) = (-1)·(-1) = 1 = \left( \frac {ab} p\right) (pa)(pb)=(1)(1)=1=(pab)

当a,b一个是QR,另一个是QNR时,ab是QNR,有 ( a p ) ( b p ) = 1 ⋅ ( − 1 ) = − 1 = ( a b p ) \left( \frac a p\right)\left( \frac b p\right) = 1·(-1) = -1 = \left( \frac {ab} p\right) (pa)(pb)=1(1)=1=(pab)

( a p ) ( b p ) = ( a b p ) \left( \frac a p\right)\left( \frac b p\right) =\left( \frac {ab} p\right) (pa)(pb)=(pab)成立


6.6. 给出推论11.1的完整证明

当 p ≡ 1 ( m o d   4 ) , 存 在 k ∈ Z , 使 得 p = 4 k + 1 , 由 欧 拉 准 则 , 有 当p≡1(mod\ 4),存在k\in Z,使得p=4k+1,由欧拉准则,有 p1(mod 4),kZ,使p=4k+1
( − 1 p ) = ( − 1 ) ( p − 1 ) / 2 = ( − 1 ) ( 4 k + 1 − 1 ) / 2 = 1 ( m o d   p ) = 1 \left( \frac {-1} p\right) =(-1)^{(p-1)/2}= (-1)^{(4k+1-1)/2}=1(mod\ p)=1 (p1)=(1)(p1)/2=(1)(4k+11)/2=1(mod p)=1
当 p ≡ − 1 ( m o d   4 ) , 存 在 k ∈ Z , 使 得 p = 4 k + 3 , 由 欧 拉 准 则 , 有 当p≡-1(mod\ 4),存在k\in Z,使得p=4k+3,由欧拉准则,有 p1(mod 4),kZ,使p=4k+3
( − 1 p ) = ( − 1 ) ( p − 1 ) / 2 = ( − 1 ) ( 4 k + 3 − 1 ) / 2 = ( − 1 ) ( m o d   p ) = − 1 \left( \frac {-1} p\right) =(-1)^{(p-1)/2}= (-1)^{(4k+3-1)/2}=(-1)(mod\ p)=-1 (p1)=(1)(p1)/2=(1)(4k+31)/2=(1)(mod p)=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值