1. 证明命题11.2
证:用 Q R p QR_p QRp 表示模 p p p 的 Q R QR QR 的集合, Q R p QR_p QRp 在乘法上成群。
(1) 封闭性:
∀
a
,
b
∈
Q
R
p
,
a
∗
b
=
Q
R
∈
Q
R
p
\forall a,b \in QR_p,a*b =QR \in QR_p
∀a,b∈QRp,a∗b=QR∈QRp
(2) 结合律:
∀
a
,
b
,
c
∈
Q
R
p
,
有
{
a
≡
x
1
2
(
m
o
d
p
)
y
≡
x
2
2
(
m
o
d
p
)
z
≡
x
3
2
(
m
o
d
p
)
\forall a,b,c \in QR_p,有\left\{ \begin{aligned} a \ & ≡& x_1^2(mod\ p)\\ y \ & ≡& x_2^2(mod\ p) \\ z \ & ≡& x_3^2(mod\ p) \end{aligned} \right.
∀a,b,c∈QRp,有⎩⎪⎨⎪⎧a y z ≡≡≡x12(mod p)x22(mod p)x32(mod p)
(
a
∗
b
)
∗
c
=
x
1
2
x
2
2
x
3
2
(
m
o
d
p
)
=
a
∗
(
b
∗
c
)
(a*b)*c=x_1^2x_2^2x_3^2(mod\ p)=a*(b*c)
(a∗b)∗c=x12x22x32(mod p)=a∗(b∗c)
(3) 单位元:
乘法单位元:1
(4) 逆元:
p=1时,显然
Q
R
p
QR_p
QRp满足群的定理
p≥3时,假设存在逆元 a − 1 a^{-1} a−1
由费马小定理有:
a
p
−
1
≡
1
(
m
o
d
p
)
a^{p-1}≡1(mod\ p)
ap−1≡1(mod p)
a
a
−
1
≡
1
(
m
o
d
p
)
aa^{-1}≡1(mod\ p)
aa−1≡1(mod p)
a
−
1
≡
a
p
−
2
a^{-1}≡a^{p-2}
a−1≡ap−2
故逆元存在
2.使用群论的方法证明定理11.1
证:设 p p p 为奇素数,则刚好存在 ( p − 1 ) / 2 (p − 1)/2 (p−1)/2 个模 p 的 Q R QR QR 和 ( p − 1 ) / 2 (p − 1)/2 (p−1)/2 个模 p p p 的 Q N R QNR QNR。
3.定义映射 ψ : Z p ∗ → { ± 1 } 为 ψ ( a ) = ( a p ) , ∀ a ∈ Z p ∗ 。 ψ : Z^*_p → \{±1\} 为 ψ(a) = \left( \frac a p\right),∀a ∈ Z^*_p。 ψ:Zp∗→{±1}为ψ(a)=(pa),∀a∈Zp∗。请证明这是一个满同态
ψ
(
a
⋅
b
)
=
(
a
⋅
b
p
)
=
(
a
p
)
⋅
(
b
p
)
=
ψ
(
a
)
⋅
ψ
(
b
)
ψ(a⋅b)= \left( \frac {a⋅b} p\right) = \left( \frac a p\right)⋅ \left( \frac b p\right)=ψ(a)⋅ψ(b)
ψ(a⋅b)=(pa⋅b)=(pa)⋅(pb)=ψ(a)⋅ψ(b)
所以
ψ
\psi
ψ是群同态
∀
a
∈
Z
p
∗
,
若
a
为
Q
R
,
则
ψ
(
a
)
=
1
;
若
a
为
Q
N
R
,
则
ψ
(
a
)
=
−
1
\forall a \in Z_p^*,若a为QR,则\psi(a)=1;若a为QNR,则\psi(a)=-1
∀a∈Zp∗,若a为QR,则ψ(a)=1;若a为QNR,则ψ(a)=−1
故
ψ
\psi
ψ为满射
综上 ψ \psi ψ是一个满同态
4.设 p 是奇素数,请证明 Z p ∗ Z^*_p Zp∗ 的所有生成元都是模 p 的二次非剩余
∀ a 为 Z p ∗ d 的 生 成 元 , 设 m 是 模 p 的 Q R , n 是 模 p 的 Q N R , ∃ p , q ∈ Z , a p = m , a q = n \forall a为 Z_p^*d的生成元,设m是模p的QR,n是模p的QNR,\exists p,q \in Z,a^p=m,a^q=n ∀a为Zp∗d的生成元,设m是模p的QR,n是模p的QNR,∃p,q∈Z,ap=m,aq=n
当 生 成 元 a 为 模 p 的 Q R 时 , ∀ z ∈ Z , a z 为 Q R 当生成元a为模p的QR时, \forall z \in Z,a^z为QR 当生成元a为模p的QR时,∀z∈Z,az为QR
当 生 成 元 a 为 模 p 的 Q N R 时 , ∀ z ∈ Z , a 2 z 为 Q R , a 2 z + 1 为 Q R 当生成元a为模p的QNR时, \forall z \in Z,a^{2z}为QR,a^{2z+1}为QR 当生成元a为模p的QNR时,∀z∈Z,a2z为QR,a2z+1为QR
因 为 a p = m , a q = n , 所 以 a 为 Q N R 因为a^p=m,a^q=n,所以a为QNR 因为ap=m,aq=n,所以a为QNR
可 得 Z 的 ∗ 所 有 生 成 元 都 是 模 p 的 Q N R 可得Z^*_ 的所有生成元都是模 p 的QNR 可得Z的∗所有生成元都是模p的QNR
5. 证明命题11.4
(1)
当a为QR时,有
a
≡
b
≡
x
2
(
m
o
d
p
)
,
a≡b≡x^2 (mod\ p),
a≡b≡x2(mod p),此时b为QR
,
(
a
p
)
=
(
b
p
)
=
1
,\left( \frac a p\right)=\left( \frac b p\right)=1
,(pa)=(pb)=1
当a为QNR时,没有 a ≡ b ≡ x 2 ( m o d p ) , a≡b≡x^2 (mod\ p), a≡b≡x2(mod p),此时b为QNR,有 ( a p ) = ( b p ) = − 1 \left( \frac a p\right)=\left( \frac b p\right)=-1 (pa)=(pb)=−1
故 a ≡ b ( m o d p ) , ( a p ) = ( b p ) a≡b(mod\ p),\left( \frac a p\right)=\left( \frac b p\right) a≡b(mod p),(pa)=(pb)成立
(2)
当a,b为QR时,ab为QR,有
(
a
p
)
(
b
p
)
=
1
⋅
1
=
1
=
(
a
b
p
)
\left( \frac a p\right)\left( \frac b p\right) = 1·1 = 1 = \left( \frac {ab} p\right)
(pa)(pb)=1⋅1=1=(pab)
当a,b为QNR时,ab为QR,有 ( a p ) ( b p ) = ( − 1 ) ⋅ ( − 1 ) = 1 = ( a b p ) \left( \frac a p\right)\left( \frac b p\right) = (-1)·(-1) = 1 = \left( \frac {ab} p\right) (pa)(pb)=(−1)⋅(−1)=1=(pab)
当a,b一个是QR,另一个是QNR时,ab是QNR,有 ( a p ) ( b p ) = 1 ⋅ ( − 1 ) = − 1 = ( a b p ) \left( \frac a p\right)\left( \frac b p\right) = 1·(-1) = -1 = \left( \frac {ab} p\right) (pa)(pb)=1⋅(−1)=−1=(pab)
故 ( a p ) ( b p ) = ( a b p ) \left( \frac a p\right)\left( \frac b p\right) =\left( \frac {ab} p\right) (pa)(pb)=(pab)成立
6.6. 给出推论11.1的完整证明
当
p
≡
1
(
m
o
d
4
)
,
存
在
k
∈
Z
,
使
得
p
=
4
k
+
1
,
由
欧
拉
准
则
,
有
当p≡1(mod\ 4),存在k\in Z,使得p=4k+1,由欧拉准则,有
当p≡1(mod 4),存在k∈Z,使得p=4k+1,由欧拉准则,有
(
−
1
p
)
=
(
−
1
)
(
p
−
1
)
/
2
=
(
−
1
)
(
4
k
+
1
−
1
)
/
2
=
1
(
m
o
d
p
)
=
1
\left( \frac {-1} p\right) =(-1)^{(p-1)/2}= (-1)^{(4k+1-1)/2}=1(mod\ p)=1
(p−1)=(−1)(p−1)/2=(−1)(4k+1−1)/2=1(mod p)=1
当
p
≡
−
1
(
m
o
d
4
)
,
存
在
k
∈
Z
,
使
得
p
=
4
k
+
3
,
由
欧
拉
准
则
,
有
当p≡-1(mod\ 4),存在k\in Z,使得p=4k+3,由欧拉准则,有
当p≡−1(mod 4),存在k∈Z,使得p=4k+3,由欧拉准则,有
(
−
1
p
)
=
(
−
1
)
(
p
−
1
)
/
2
=
(
−
1
)
(
4
k
+
3
−
1
)
/
2
=
(
−
1
)
(
m
o
d
p
)
=
−
1
\left( \frac {-1} p\right) =(-1)^{(p-1)/2}= (-1)^{(4k+3-1)/2}=(-1)(mod\ p)=-1
(p−1)=(−1)(p−1)/2=(−1)(4k+3−1)/2=(−1)(mod p)=−1