动态规划练习入门(斐波拉契数列)

算法这一块,动态规划问题的一般形式就是求最值,在计算机问题上应用比较多,需要多探究,这是我对动态规划的一个练习入门-斐波拉契数列

/**
 * 斐波拉契 练习动态规划
 *         { 1 , n=1 | n=2
 * f(x) =  {
 *         { f(x-2) + f(x-1)
 * @author
 */
public class Fibonacci {
    /**
     * 暴力递归 直接根据方程进行递归,
     * 但是这种方法 会重复计算多次
     * 如              f(5)
     *          f(4)        f(3)
     *       /    \
     *     f(3) + f(2)    f(2) f(1)
     *     /  \
     *   f(2)+f(1)
     *   其中就会发现 右部f(3)分支就是重复计算的 ,如果值大时 直接爆炸
     * @param x
     * @return
     */
    public static int violentRecursion(int x){
        if(x <= 2){
            return 1;
        }
        return violentRecursion(x - 2)+violentRecursion(x-1);
    }

    /**
     * 减少重复计算的递归
     * 首先定义一个可以保存计算值的存储空间  如下使用的便是数组 ,也可以用hash表
     * 每次计算时 将 x 计算出的 f(x)进行存储,下次计算时便可直接取出,不再重复计算
     *
     * @param x
     * @return
     */
    public static int singleRecursion(int x){
        // 定义f(x) 存储空间
        int[] fx = new int[x+1];
        int l = singleRecursion(x, fx);
        return l;
    }
    public static int singleRecursion(int x,int[] fx){
        if(x <= 2){
            return 1;
        }
        // 存在f(x)值,直接取出
        if(fx[(int) x] != 0){
            return fx[(int) x];
        }
        // 不存在则通过递归计算保存
        fx[x] = singleRecursion(x-2,fx) + singleRecursion(x-1,fx);
        return fx[x];
    }
    /**
     * 动态规划 Dynamic programming  (这是重点!!)
     * 使用 动态表的方式进行计算
     * 定义出计算值大小的空间存储表,为了直观表达 (f(x) = dp[x]) 长度申请为x+1
     * 依次计算 1~x 值
     * @param x
     * @return
     */
    public static int dpTable(int x){
        int[] dp = new int[x+1];
        dp[1] = dp[2] = 1;
        for (int j = 3; j < dp.length; j++) {
            dp[j] = dp[j-2]+dp[j-1];
        }
        return dp[x];
    }
    /**
     * 动态规划 Dynamic programming  优化
     * 前面使用动态表的方式就会发现,在此题中我们不需要保存 1~x-1的值,
     * 所以可以对空间进行省略,不使用额外空间进行存储值 ,只需要使用两个变量来保存 x-1 与 x-2 的值便可以计算出 f(x)
     * 使用 pre保存上次计算值,cur保存当前计算值, 计算出下次的值  calcCur= pre + cur 并替换 pre cur
     * @param x
     * @return
     */
    public static int dp(int x){
        //定义初始 f(1) = 1  f(2) = 1;
        int pre = 1,cur = 1;
        //计算出 f(3~x) 并更改变量保存值
        for (int i = 3; i <= x; i++) {
            int calcCur = pre + cur;
            pre = cur;
            cur = calcCur;
        }
        return cur;
    }
 }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值