[概率练习] n个小球放入m个盒子(8大类)

球可以相同也可以不同,盒子可以一样也可以不一样,盒子可以空也可以不能空,那么一共就有2x2x2=8种

n个小球放入m个盒子

1.球同,盒不同,不能空(隔板法) 一共有n-1个空隙(总共n+1个空隙,不能空要去掉头尾=n-1) ,要插m-1个板,答案为 (n-1) / (m-1)
在这里插入图片描述
上图就是7个小球3个盒子的一种情况

2.球同,盒不同,能空 如果给每个盒子一个球,就可以把问题转化为不能空的情况了,就相当于n+m个小球放入m个盒子且不能空,答案就是 (n+m-1) / (m-1)

3.球不同,盒同,不能空(dp问题)
dp[n][m]代表n个小球放入m个不同的盒子且不能空的方法
当 i >= 0 时,dp[i][i]=1 (i个小球放入i个盒子,就只能1个盒子放1个)
当 i > 0 时,dp[i][0]=0(都没有盒子了,肯定无解)
dp[i][j] = j 乘 dp[i-1][j] + dp[i-1][j-1]
(第i个球可以放在已经有的j个盒子的一个,有j种方法,也就是j*dp[i-1][j],
也可以是放入一个新的盒子,就是dp[i-1][j-1]) 所以答案如下:
在这里插入图片描述

4.球不同,盒同,可以空(第二类斯特林数) 那就是3的情况(球不同,盒同,不允许为空)用1个盒子+用2个盒子+…+m个盒子在这里插入图片描述

5.球不同,盒不同,不能空 那就是3的情况(球不同,盒同,不允许为空)对盒子进行全排列 答案就是 m!*dp[n][m] (dp[n][m]是第二类斯特林数)

6.球不同,盒不同,可以空 每一个小球都有m种方法,且相互独立
答案就是m^n

7.球同,盒同,可以空(dp问题)

dp[i][j]代表球同,盒同,可以空的放法 当 i>=j 时,dp[i][j] = dp[i][j-1]+dp[i-j][j]

( 我们可以在所有的盒子上放一个球dp[i-j][j],也可以不选择这种操作,但是以后都不对其中一个盒子进行操作了,那就是dp[i][j-1] )

当 i<j 时,dp[i][i] (多余的盒子都没有什么卵用了)

当 j=1 时,1(只有一个盒子了就只能放在那个盒子了,只有一种放法)

当 i=1 时,1(只有一个球了,放哪个盒子都一样,只有一种放法)

当 i=0 时 1(没有球了,也是1种方法)
答案是在这里插入图片描述

8.球同,盒同,不能空
那就是7的情况(球同,盒同,可以空)每个盒子先放一个保证不空
所以答案是 dp[n-m][m]
(n>=m)
0 (n<m)
其中dp是情况7的dp

**添一份模板代码【球同,盒同,可以空,就是情况7】 **

#include <iostream>
int main() {
	const int N = 11;
	int dp[N][N] = {}, t, n, m;
	for(int i=0; i<N; ++i)
		for(int j=1; j<N; ++j) {
			if(i<=1 || j==1)  dp[i][j] = 1;
			else if(i<j)  dp[i][j] = dp[i][i];
			else  dp[i][j] = dp[i][j-1] + dp[i-j][j];
		}
	scanf("%d", &t);
	while (t--) {
		scanf("%d%d", &n, &m);
		printf("%d\n", dp[n][m]);
	}
	return 0;
}

怕自己弄丢了巨巨的博文,就按照喜欢的格式改动了一下,看的清楚一些
大佬的原文链接

  • 11
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
其中arrb[i]表示第i个盒子中是否已经放入小球(1表示已经放入,0表示未放入)。现在需要找到一个未被检查过的盒子,将小球放入其中,使得放入小球后,所有盒子放入小球的数量都不相同。若存在多个未被检查过的盒子都可以满足要求,则选择编号最小的盒子放入小球。 解决思路: 1.遍历数组arrb,将所有已经放入小球盒子对应的位置在数组arra中标记为1; 2.遍历数组arra,找到第一个未被检查过的盒子,标记为当前最小盒子; 3.从最小盒子开始,向后遍历数组arra,找到第一个未被检查过的盒子,将其标记为当前比当前最小盒子放入小球后,放入小球的数量最少的盒子; 4.继续遍历数组arra,找到所有未被检查过的盒子中,放入小球后,放入小球的数量最少的盒子; 5.将小球放入最终找到的盒子中,更新数组arrb中对应位置的值为1,表示该盒子已经放入小球; 6.返回最终找到的盒子编号。 代码实现: int findBox(int n, int a, int* arra, int* arrb) { int minBox = -1; //当前最小盒子 int minNum = INT_MAX; //放入小球后,放入小球的数量最少的盒子小球数量 int numCount[n + 1]; //用于记录每个盒子放入小球的数量 memset(numCount, 0, sizeof(numCount)); //初始化为0 for(int i = 1; i <= n; i++) { if(arrb[i] == 1) { arra[i - 1] = 1; //标记为已经检查过 numCount[i]++; //更新放入小球的数量 } } for(int i = 0; i < n; i++) { if(arra[i] == 0) { //找到第一个未被检查过的盒子 minBox = i + 1; break; } } for(int i = minBox + 1; i <= n; i++) { //从最小盒子开始遍历 if(arra[i - 1] == 0) { //找到未被检查过的盒子 int ballNum = numCount[i]; //放入小球后,放入小球的数量 if(ballNum < minNum) { //更新放入小球后,放入小球的数量最少的盒子 minBox = i; minNum = ballNum; } } } for(int i = minBox + 1; i <= n; i++) { //继续遍历数组arra,找到所有未被检查过的盒子中,放入小球后,放入小球的数量最少的盒子 if(arra[i - 1] == 0) { int ballNum = numCount[i]; if(ballNum == minNum) { minBox = i; } } } arrb[minBox] = 1; //将小球放入最终找到的盒子中 return minBox; }

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

米莱虾

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值