[概率练习]n个小球放入m个盒子

球可以相同也可以不同,盒子可以一样也可以不一样,盒子可以空也可以不能空,那么一共就有2*2*2=8种

n个小球放入m个盒子

1.球同,盒不同,不能空

用插板法

 

一共有n-1个空隙(总共n+1个空隙,不能空要去掉头尾=n-1) ,要插m-1个板,

答案就是\binom{n-1}{m-1}

上图就是7个小球3个盒子的一种情况

2.球同,盒不同,能空

如果给每个盒子一个球,就可以把问题转化为不能空的情况了,就相当于n+m个小球放入m个盒子且不能空

答案就是\binom{n+m-1}{m-1}

3.球不同,盒同,不能空

这就是个dp问题了

dp[n][m]代表n个小球放入m个不同的盒子且不能空的方法

当i>=0时,dp[i][i]=1(i个小球放入i个盒子,就只能1个盒子放1个)

当i>0时,dp[i][0]=0(都没有盒子了,肯定无解)

dp[i][j]=j*dp[i-1][j]+dp[i-1][j-1]

(第i个球可以放在已经有的j个盒子的一个,有j种方法,也就是j*dp[i-1][j],

也可以是放入一个新的盒子,就是dp[i-1][j-1])

所以答案:

dp\left [ n \right ]\left [ m \right ]\left\{\begin{matrix} 1&n-m\&\&n\geq 0 \\ 0& m=0\&\&n>1\\ m*dp\left [ n-1 \right ]\left [ m \right ]+dp\left [ n-1 \right ]\left [ m-1 \right ]& otherwise \end{matrix}\right.


4.球不同,盒同,可以空这个就是第二类斯特林数

那就是3的情况(球不同,盒同,不允许为空)用1个盒子+用2个盒子+...+m个盒子

答案就是 \sum_{i=1}^{m}dp\left[n \right ]\left[i \right]    (dp[n][i]是第二类斯特林数)

5.球不同,盒不同,不能空

那就是3的情况(球不同,盒同,不允许为空)对盒子进行全排列

答案就是m!*dp[n][m](dp[n][m]是第二类斯特林数)

6.球不同,盒不同,可以空

每一个小球都有m种方法,且相互独立

答案就是m^{n}

7.球同,盒同,可以空

也是个dp问题

dp[i][j]代表球同,盒同,可以空的放法

当i>=j时,dp[i][j]=dp[i][j-1]+dp[i-j][j]

(我们可以在所有的盒子上放一个球dp[i-j][j],

也可以不选择这种操作,但是以后都不对其中一个盒子进行操作了,那就是dp[i][j-1])

当i<j时,dp[i][i](多余的盒子都没有什么卵用了)

当j=1时,1(只有一个盒子了就只能放在那个盒子了,只有一种放法)

当i=1时,1(只有一个球了,放哪个盒子都一样,只有一种放法)

当i=0时 1(没有球了,也是1种方法)

所以答案就是

dp\left[n \right ]\left[m \right ]\left\{\begin{matrix} 1 & m=1||n\leq 1\\ dp\left[n \right ]\left[n \right ] & n<m\\ dp\left[n \right ]\left[m-1 \right ]+dp\left[n-m \right ]\left[m \right ]& n\geq m \end{matrix}\right.

 

8.球同,盒同,不能空

那就是7的情况(球同,盒同,可以空)每个盒子先放一个保证不空

所以答案就是

dp[n-m][m](n>=m)

0 (n<m)

其中dp是情况7的dp

 

练习

poj1664/xujcoj->作业板->算法练习4_软件->1

题目大意:中文。。。

解法:球同,盒同,可以空,就是情况7

#include<iostream>
int main() {
	const int N = 11;
	int dp[N][N] = {}, t, n, m;
	for (int i = 0; i < N; ++i)
		for (int j = 1; j < N; ++j) {
			if (i <= 1 || j == 1)dp[i][j] = 1;
			else if (i < j)dp[i][j] = dp[i][i];
			else dp[i][j] = dp[i][j - 1] + dp[i - j][j];
		}
	scanf("%d", &t);
	while (t--) {
		scanf("%d%d", &n, &m);
		printf("%d\n", dp[n][m]);
	}
	return 0;
}

 

发布了97 篇原创文章 · 获赞 85 · 访问量 4万+

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览