【机器学习】基于GBDT的数据回归及python实现


本博文中GBDT(Gradient Boosting Decison Tree,梯度提升决策树)的决策树采用CART(Classification and Regression Tree,分类回归树)。CART主要参考 《python机器学习算法》,在这里就不赘述了,有需要的同学可以看大神的书。本博文首先介绍集成学习中的Boosting技术,然后介绍GBDT的原理及应用,在GBDT的应用部分重点介绍基于GBDT的数据回归技术,并顺便提及基于GBDT的数据分类思想(只需对回归做一点小的改进即可)。

一、Boosting技术

在面对一个复杂的问题时,我们可以训练多个模型,将这些模型的结果集成起来作为最终的结果,这种处理问题的思想被称为集成学习(参考资料【2】),集成学习分为两类:Bagging和Boosting。Bagging技术是指在样本中有放回的随机抽取几组样本数据,用这几组样本数据训练几个模型,最终由这几个模型投票决定分类结果或取均值得到回归结果,随机森林(参考资料【3】)就是一个典型的Bagging模型。Boosting技术同样是训练多个弱性能模型,但不同于Bagging技术中弱性能模型是并行且独立训练的,在Boosting中多个弱性能模型是串行的。Boosting对样本进行不同的赋值,对错误学习的样本的权重设置的较大,在后续的学习中集中处理难学的样本,最终得到一系列的预测结果,每个预测结果有一个权重。

二、GBDT原理与应用

2.1、GBDT思想

GBDT由两部分组成,分别是GB(Gradient Boosting)和DT(Decison Tree)。博文开头已经说明,DT采用CART的回归树。GB指的是沿着梯度方向,构造一系列的弱分类器函数,并以一定权重组合起来,形成最终决策的强分类器(参考资料【4】)。

2.2、基于GBDT的数据回归

假设总共有 m m m个串行CART回归树模型,每个CART模型单独拿出来的预测结果为:

f i ( X ) , { i = 1 , 2 , ⋯   , m } {f_i}\left( X \right),\left\{ {i = 1,2, \cdots ,m} \right\} fi(X),{ i=1,2,,m}

i i i个模型串行在一起的预测结果为:

F i ( X ) , { i = 1 , 2 , ⋯   , m } {F_i}\left( X \right),\left\{ {i = 1,2, \cdots ,m} \right\} Fi(X),{ i=1,2,,m}

其中 F i ( X ) = F i − 1 ( X ) + f i ( X ) {F_i}\left( X \right) = {F_{i - 1}}\left( X \right) + {f_i}\left( X \right) Fi(X)=Fi1(X)+fi(X)

假设样本标签为Y,前 i − 1 i-1 i1个模型串行的预测输出与标签真实值之间的损失函数为:

L o s s ( Y , F i − 1 ( X ) ) = 1 N ∑ j = 1 N ( y j − F i −

  • 3
    点赞
  • 52
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值