隔排消除!谁是最后的幸存者?
题意如下:
给定一个从1 到 n 排序的整数列表。
首先,从左到右,从第一个数字开始,每隔一个数字进行删除,直到列表的末尾。
第二步,在剩下的数字中,从右到左,从倒数第一个数字开始,每隔一个数字进行删除,直到列表开头。
我们不断重复这两步,从左到右和从右到左交替进行,直到只剩下一个数字。
返回长度为 n 的列表中,最后剩下的数字。
示例:
输入:
n = 9,
1 2 3 4 5 6 7 8 9
2 4 6 8
2 6
6
输出:
6
首先观察分析样例
康康有啥规律没
第一次 1 3 5 7 9 间隔2 第一个数被删除
第二次 4 8 间隔4 第一个数没有被删除
第三次 2 间隔8 第一个数被删除
…
- 第n次间隔 2^n次
- 从右往左删除的时候
当剩余的数为奇数 第一个数会被删除
当剩余的数为偶数 第一个数不会被删除 - 每次删除完
剩余的数 remain /= 2
算法设计:
res 标记开头的第一个数
step 标记每次的步长
left2right 表示从遍历方向
从左往右
第一个数会被删除 – res更新
从右往左
当剩余的数为奇数 第一个数会被删除 – res更新
当剩余的数为偶数 第一个数不会被删除 – res保持不变
每遍历一次 step=2
left2right 取反
代码如下:
class Solution {
public:
int lastRemaining(int n) {
bool left2right = true;
int res = 1, step = 1, remain = n;
while (remain > 1) {
if (left2right || remain % 2 == 1) res += step;
remain /= 2;
step *= 2;
left2right = !left2right;
}
return res;
}
};