System model
如上图所示,本文考虑 Gaussian TWRN.
[Signal Flow]
假设 Node i = { 1 , 2 } i=\{1,2\} i={
1,2} 的 rate 是 R i R_i Ri (bits/channel use), 那么使用了 n n n 次信道之后,他总共可以传 n R i nR_i nRi 个 bits. 那他的codebook的大小就可以为 2 n R i 2^{nR_i} 2nRi. 我们把 Node i i i 使用 n n n 次信道想传输的 message 记作
W i ∈ { 1 , 2 , 3 , . . . , 2 n R i } W_i \in \left\{1,2,3,..., 2^{nR_i}\right\} Wi∈{
1,2,3,...,2nRi}
且我们假设两个人的信息 W 1 W_1 W1 和 W 2 W_2 W2 是独立同均匀分布的
在每次使用信道时,node i 实际传输的信息记作
X i = [ X i ( 1 ) , X i ( 2 ) , . . . , X i ( n ) ] ⊤ \bm{X_i}=\left[X^{(1)}_i,X^{(2)}_i,...,X^{(n)}_i\right]^\top Xi=[Xi(1),Xi(2),...,Xi(n)]⊤
每个node i i i 的信号在 relay 处叠加后,我们有
Y R = [ Y R ( 1 ) , Y R ( 2 ) , . . . , Y R ( n ) ] ⊤ \bm{Y_R}=\left[Y^{(1)}_R,Y^{(2)}_R,...,Y^{(n)}_R\right]^\top YR=[YR(1),YR(2),...,YR(n)]⊤
Relay 从接收到的 Y R Y_R YR 中解出信息 X R X_R XR 并把它广播出去
X R = [ X R ( 1 ) , X R ( 2 ) , . . . , X R ( n ) ] ⊤ \bm{X_R}=\left[X^{(1)}_R,X^{(2)}_R,...,X^{(n)}_R\right]^\top XR=[XR(1),XR(2),...,XR(n)]⊤
下行, X R \bm{X_R} XR 经过信道后,在各个node i i i 接收的信号我们记作
Y i = [ Y i ( 1 ) , Y i ( 2 ) , . . . , Y i ( n ) ] ⊤ \bm{Y_i}=\left[Y^{(1)}_i,Y^{(2)}_i,...,Y^{(n)}_i\right]^\top Yi=[Yi(1),Yi(2),...,Yi(n)]⊤
经过 n 次传输,最终两个节点要把对方的信息恢复出来。记恢复的信息为
W ^ i ∈ { 1 , 2 , 3 , . . . , 2 n R i } \hat{W}_i \in \left\{1,2,3,..., 2^{nR_i}\right\} W^i∈{
1,2,3,...,2nRi}
[Channels]
上行信道是同时传输
- Y R ( t ) = X 1 ( t ) + X 2 ( t ) + Z R ( t ) Y^{(t)}_R=X^{(t)}_1+X^{(t)}_2+Z^{(t)}_R YR(t)=X1(t)+X2(t)+ZR(t), 其中 Z R ( t ) ∼ C N ( 0 , σ R 2 ) Z^{(t)}_R\sim\mathcal{CN}(0,\sigma^2_R) ZR(t)∼CN(0,σR