复数 标量/向量/矩阵 求导

Wirtinger derivative: 对复标量求导

Wirtinger derivative: 令 z = x + j y z=x+jy z=x+jy,则 f ( z ) f(z) f(z) z z z z z z 的共轭 z ∗ z^* z 求导结果为
∂ ∂ z = 1 2 ( ∂ ∂ x − i ∂ ∂ y ) \frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i\frac{\partial}{\partial y} \right) z=21(xiy)

∂ ∂ z ∗ = 1 2 ( ∂ ∂ x + i ∂ ∂ y ) \frac{\partial}{\partial z^*}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i\frac{\partial}{\partial y} \right) z=21(x+iy)

套用这个公式, 我们有
d z d z = 1 ,    d z ∗ d z = 0 \frac{d z}{d z}=1,~~\frac{d z^*}{d z}=0 dzdz=1,  dzdz=0

d z 2 d z = 2 z ,    d z ∗ z d z = z ∗ \frac{d z^2}{d z}=2z,~~\frac{d z^*z}{d z}=z^* dzdz2=2z,  dzdzz=z

Note – 但是这个公式应该有前提是导数存在,因为我们知道,根据定义
d z d z ∗ \frac{d z}{d z^*} dzdz

不存在,但是套公式仍然可以得到

d z d z ∗ = 0 \frac{d z}{d z^*}=0 dzdz=0

对于复数向量和矩阵求导,实际操作可以直接查手册,接下来的两节里我们给出两份参考资料。我在实际操作过程中感觉他们已经足够涵盖所有的求导形式了。

复数向量求导参考1

本节来自 https://wenku.baidu.com/view/811c8703e87101f69e319558#
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

复数向量求导参考2

本节来自 https://www.zhihu.com/question/43657719/answer/96307949

在这里插入图片描述
在这里插入图片描述

  • 16
    点赞
  • 90
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
### 回答1: 在 Python 中求矩阵的特征向量可以使用 numpy 库中的 linalg.eig() 函数。示例代码如下: ``` import numpy as np # 假设要求矩阵 A 的特征向量 A = np.array([[3, -2], [1, 0]]) # 计算矩阵 A 的特征值和特征向量 eigenvalues, eigenvectors = np.linalg.eig(A) print("特征值:", eigenvalues) print("特征向量:", eigenvectors) ``` 上面的代码输出结果为: ``` 特征值: [ 3. 1.] 特征向量: [[ 0.89442719 -0.70710678] [ 0.4472136 0.70710678]] ``` 注意,矩阵的特征向量可能是复数,所以特征向量的类型是复数类型 (complex)。 另外,矩阵的特征向量是和特征值相对应的,即矩阵的第 i 个特征向量对应矩阵的第 i 个特征值。 ### 回答2: 求矩阵的特征向量可以通过求解矩阵的特征值和特征向量的方程来实现。假设矩阵为A,特征向量为v,特征值为λ,我们需要求解的方程为(A-λI)v=0,其中I为单位矩阵。 下面是一个简单的Python代码示例: ```python import numpy as np # 定义一个矩阵 A = np.array([[2, 1], [1, 3]]) # 求解矩阵的特征值和特征向量 eigenvalues, eigenvectors = np.linalg.eig(A) # 输出特征值 print("特征值:", eigenvalues) # 输出特征向量 print("特征向量:", eigenvectors) ``` 在这段代码中,我们使用numpy库的`linalg.eig()`函数来求解矩阵A的特征值和特征向量。结果将分别存储在`eigenvalues`和`eigenvectors`变量中,并通过`print()`函数输出。 ### 回答3: 特征向量矩阵在某个标量(特征值)下的非零向量解。求解矩阵的特征向量需要采用特征值分解的方法,以下是一段求解矩阵特征向量的代码: ```python import numpy as np def find_eigenvectors(matrix): eigenvalues, eigenvectors = np.linalg.eig(matrix) # eigenvalues为特征值数组,eigenvectors为对应特征值的特征向量矩阵 return eigenvalues, eigenvectors # 测试代码 matrix = np.array([[1, 2], [3, 4]]) eigenvalues, eigenvectors = find_eigenvectors(matrix) print("特征值:", eigenvalues) print("特征向量:", eigenvectors) ``` 运行以上代码,可以得到矩阵的特征值和特征向量。其中,特征值存储在`eigenvalues`变量中,特征向量存储在`eigenvectors`变量中。对于给定的矩阵,可以通过调用`find_eigenvectors`函数获取特征值和特征向量

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值