【数据分析师_04_Python数据分析基础】006_Pandas时序分析(df.tz_localize 时区位置、df.tz_convert 时区转换)

本文详细介绍了Pandas库中用于时序分析的两个关键函数:df.tz_localize用于设置时区位置,df.tz_convert则用于进行时区转换。在数据处理中,这两者对于处理带有或不带时区信息的时间数据至关重要。通过实例展示了如何使用这两个函数,包括查看和转换不同时区的时间数据。
摘要由CSDN通过智能技术生成


转载请注明出处 😃!
手动反爬:Pandas时序分析(df.tz_localize 时区位置、df.tz_convert 时区转换)
https://blog.csdn.net/Lyun911/article/details/112716440

注:以下使用 Jupyter Notebook 演示


6 pd.dataframe.timezone 时区转换功能

在处理数据的时候,我们拿到的数据一般都有两种时间状态:
A 本地时间状态,不区分时区问题
B 带有时区的时间状态

timezone 功能就是解决时区问题的利器

在这里插入图片描述
在这里插入图片描述
载入数据(时间/股价):

import pandas as pd

df = pd.read_csv("msft.csv")
df
# 注:表中【8/17/2017 9:00:00 AM】是美国 New York 的时间!!!

df = pd.read_csv(
    "msft.csv"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值