Codeforces743D-Chloe and pleasant prizes(树形dp)

题目链接

http://codeforces.com/contest/743/problem/D

思路

要求的就是在树上找两个不相交的子树A和B,并且子树和A + B最大
首先,第一步肯定是将无根树转为有根树
然后,我们考虑先单独求对于每个节点i,以i为根节点的最大子树和
这里写图片描述

状态表示
d[u][s] : 当前节点为u,选中状态为s的最大子树和(s = 0代表当前节点不选,s = 1代表要选当前节点)
转移
1. s = 0:不选择当前节点,那么一定是从子树中选一个子树和最大的节点作为当前节点的最大子树和
d[u][s]=max{d[v][s]|vson[u]}
2. s = 1:即要选择当前节点,那么当前节点及其子树都应该被全部选择
d[u][s]=vson[s]d[v][1]

最后,对于儿子数大于2的节点,选出最大的两个子树求和即可

细节

判断无解的情况:即为1条链的时候无解,统计一下每个节点的儿子节点数即可

代码

#include <bits/stdc++.h>

using namespace std;

inline int in() {int x; scanf("%d", &x); return x;}
#define pr(x) {cout << #x << ' ' << x << endl;}
#define LL long long

const int maxn = 200000 + 5;
LL a[maxn], d[maxn][2];
int son[maxn], pa[maxn], n, vis[maxn][2];

vector<int> G[maxn];

LL dfs(int u, int s, int p, int sta) {
    if (vis[u][s]) return d[u][s];
    vis[u][s] = 1;
    pa[u] = p;
    if (G[u].size() == 1 && G[u][0] == p) return d[u][s] = (s == 1 ? a[u] : -1e15);
    if (s == 1) {
        d[u][s] = a[u];
        for (auto v : G[u]) {
            if (v == p) continue;
            if (sta == 1) son[u]++;
            d[u][s] += dfs(v, 1, u, sta);
        }
    } else {
        d[u][s] = -1e15;
        for (auto v : G[u]) {
            if (v == p) continue;
            d[u][s] = max(dfs(v, 1, u, sta), max(dfs(v, 0, u, sta), d[u][s]));
        }
    }
    return d[u][s];
}

LL solve() {
    LL res = -1e18;
    for (int u = 1; u <= n; u++) {
        if (son[u] < 2) continue;
        vector<LL> tmp;
        tmp.clear();
        for (auto v : G[u]) {
            if (v == pa[u]) continue;
            tmp.push_back(max(d[v][1], d[v][0])); 
        }
        sort(tmp.begin(), tmp.end(), greater<LL>());
        LL max1 = tmp[0], max2 = tmp[1];
        res = max(res, max1 + max2);
    }
    return res;
}

int main() {
    n = in();
    bool flag = false;
    for (int i = 1; i <= n; i++) scanf("%lld", &a[i]);
    for (int i = 0; i < n - 1; i++) {
        int u = in(); int v = in();
        G[u].push_back(v);
        G[v].push_back(u);
    }
    dfs(1, 1, -1, 1);
    for (int i = 1; i <= n; i++) {
        if (son[i] >= 2) flag = true;
    }
    if (!flag) {
        cout << "Impossible" << endl;
        return 0;
    }
    dfs(1, 0, -1, 0);
    LL res = solve();
    cout << res << endl;
    return 0;
}

引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值