信效度检验过程以及常出现的问题

本文详细介绍了统计中的效度和信度检验过程,包括KMO和巴特利特球形度用于评估量表效度,以及克隆巴赫Alpha系数衡量信度。同时,针对信度太低和效度矩阵非正定的问题提供了排查策略。
摘要由CSDN通过智能技术生成

一、效度检验

1.检验过程

分析——降维——因子,再描述处勾选“KMO和巴特利特球形度检验”

2.结果解读

2.1  分析KMO值:如果此值高于0.8,则说明效度好;如果此值介于0.7~0.8之间,则说明效度较好;如果此值介于0.6~0.7,则说明效度一般;如果此值小于0.6,则说明效度较差;
2.2  Bartlett检验p值要小于0.05。

二、信度检验

1.检验过程

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值