Elaticsearch基本使用

Elaticsearch,简称为es, 是一个建立在全文搜索引擎框架 Apache Lucene™ 基础上的开源搜索引擎,它可以近乎实时的存储、检索数据;本身扩展性很好,可以扩展到上百台服务器,处理PB级别的数据。同时Elasticsearch 是使用 Java 编写的,采用了 Lucene 来实现索引与搜索的功能。当你使用它做全文搜索时,只需要使用简单流畅的 RESTful API 即可,并不需要了解 Lucene 背后复杂的的运行原理。(API本质就是一次http请求,可以用任何工具发起http请求)
在这里插入图片描述
Elasticsearch安装教程:https://blog.csdn.net/Lzy410992/article/details/114709726

操作索引

Elasticsearch也是基于Lucene的全文检索库,本质也是存储数据,很多概念与MySQL类似的。

对比关系:

索引(indices)------------------------Databases 数据库

  类型(type)-------------------------Table 数据表

     文档(Document)------------------Row 行

	   字段(Field)-------------------Columns 列 
       
       映射(mapping)-----------------每个列的约束条件

详细说明:

概念说明
索引 (index)一个索引就是一个拥有几分相似特征的文档的集合
索引库(indices)indices是index的复数,代表许多的索引(拥有一些相似性特征的集合)
类型(type)类型是模拟mysql中的table概念,一个索引库下可以有不同类型的索引,比如商品索引,订单索引,其数据格式不同。不过这会导致索引库混乱,因此未来版本中会移除这个概念
文档(document)存入索引库原始的数据。比如每一条商品信息,就是一个文档
字段(field)文档中的属性,相当于是数据表的字段,对文档数据根据不同属性进行的分类标识
映射配置(mappings)mapping是处理数据的方式和规则方面做一些限制,如字段的数据类型、属性、是否索引、是否存储等特性
集群 (cluster)一个集群就是由一个或多个节点组织在一起,它们共同持有整个的数据,并一起提供索引和搜索功能。
节点 (node)节点是集群中的一个服务器,作为集群的一部分,它存储数据,参与集群的索引和搜索功能
分片(shard)数据拆分后的各个部分,一个索引可以存储超出单个结点硬件限制的大量数据
副本(replica)每个分片的复制

Elasticsearch本身就是分布式的,因此即便你只有一个节点,Elasticsearch默认也会对你的数据进行分片和副本操作,当你向集群添加新数据时,数据也会在新加入的节点中进行平衡。

ES Restful API 中的VERB

参数作用
GET获取请求对象的当前状态
POST改变对象的当前状态
PUT创建一个对象
DELETE销毁对象
HEAD请求获取对象的基础信息

创建索引的请求格式:

PUT /索引库名

示例:
在这里插入图片描述

修改索引的请求格式:

PUT /索引库名/_settings

示例:
在这里插入图片描述

查询所有的索引:

GET _cat/indices

示例:
在这里插入图片描述
检测集群是否健康:

GET _cat/health

示例:
在这里插入图片描述
获取集群的节点列表:

GET _cat/nodes

示例:
在这里插入图片描述

查看索引设置请求格式:

GET /索引库名

查看所有索引库配置

GET *

示例:
在这里插入图片描述

删除索引请求格式:

DELETE /索引库名

示例:
在这里插入图片描述

使用HEAD请求,查看索引是否存在:

HEAD /索引库名

示例:
在这里插入图片描述

映射配置

索引有了,接下来肯定是添加数据。但是,在添加数据之前必须定义映射。映射是定义文档的过程,文档包含哪些字段,这些字段是否保存,是否索引,是否分词等,配置清楚映射,Elasticsearch会帮我们进行索引库的创建。

创建映射字段:

PUT /索引库名/_mapping/类型名称
{
  "properties": {
    "字段名": {
      "type": "类型",
      "index": true"store": true"analyzer": "分词器"
    }
  }
}
  • 类型名称:就是前面将的type的概念,类似于数据库中的不同表
    字段名:任意填写 ,可以指定许多属性,例如:
  • type:类型,可以是text、long、short、date、integer、object等
  • index:是否索引,默认为true
  • store:是否存储,默认为false
  • analyzer:分词器,这里的ik_max_word即使用ik分词器

字段属性详解:

type:数据类型

  • String类型,分两种:

    text:可分词,不可参与聚合
    keyword:不可分词,数据会作为完整字段进行匹配,可以参与聚合

  • Numerical:数值类型,分两类

    基本数据类型:long、interger、short、byte、double、float、half_float
    浮点数的高精度类型:scaled_float,需要指定一个精度因子,比如10或100。elasticsearch会把真实值乘以这个因子后存储,取出时再还原。

  • Date:日期类型, elasticsearch可以对日期格式化为字符串存储,但是建议我们存储为毫秒值,存储为long,节省空间。

index:影响字段的索引情况

  • true:字段会被索引,则可以用来进行搜索。默认值就是true,你不进行任何配置,字段就会被索引
  • false:字段不会被索引,不能用来搜索,有些字段是我们不希望被索引的,需要手动设置index为false

store:是否将数据进行额外存储。

Elasticsearch在创建文档索引时,会将文档中的原始数据备份,保存到一个叫做_source的属性中。而且我们可以通过过滤_source来选择哪些要显示,哪些不显示。而如果设置store为true,就会在_source以外额外存储一份数据,多余,因此一般我们都会将store设置为false,事实上,store的默认值就是false。

boost:激励因子,与lucene中一样

示例:发起请求

在这里插入图片描述

查看映射关系:

GET /索引库名/_mapping

示例:
在这里插入图片描述

新增数据

通过POST请求,可以向一个已经存在的索引库中添加数据。

POST /索引库名/类型名
{
    "key":"value"
}

示例:
在这里插入图片描述

查询数据:

get _search
{
    "query":{
        "match_all":{}
    }
}

示例:
在这里插入图片描述

智能判断: 事实上Elasticsearch非常智能,你不需要给索引库设置任何mapping映射,它也可以根据你输入的数据来判断类型,动态添加数据映射。

测试一下:

POST /ly/goods/2
{
    "title":"苹果手机",
    "images":"http://image.ly.com/12479122.jpg",
    "price":2899.00,
    "stock": 200,
    "saleable":true
}

额外添加了stock库存,和saleable是否上架两个字段。查看结果:
在这里插入图片描述

在看下索引库的映射关系:
在这里插入图片描述

修改数据

把刚才新增的请求方式改为PUT,就是修改了。不过修改必须指定id,

  • id对应文档存在,则修改
  • id对应文档不存在,则新增

删除数据

删除使用DELETE请求,同样,需要根据id进行删除:

DELETE /索引库名/类型名/id值

示例:
在这里插入图片描述

查询

基本查询:

GET /索引库名/_search
{
    "query":{
        "查询类型":{
            "查询条件":"查询条件值"
        }
    }
}

这里的query代表一个查询对象,里面可以有不同的查询属性

  • 查询类型:match_allmatchtermrange 等等
  • 查询条件:查询条件会根据类型的不同,写法也有差异,后面详细讲解

查询所有(match_all):

示例:

GET /ly/_search
{
    "query":{
        "match_all": {}
    }
}

在这里插入图片描述

匹配查询(match):

添加数据,便于测试:

PUT /ly/goods/2
{
    "title":"苹果手机",
    "images":"http://image.ly.com/12479122.jpg",
    "price":3899.00
}

PUT /ly/goods/3
{
    "title":"华为手机",
    "images":"http://image.ly.com/12479122.jpg",
    "price":1899.00
}

PUT /ly/goods/4
{
    "title":"小米电视",
    "images":"http://image.ly.com/12479122.jpg",
    "price":5899.00
}

or关系: match类型查询,会把查询条件进行分词,然后进行查询,多个词条之间是or的关系

GET /heima/_search
{
    "query":{
        "match":{
            "title":"小米电视"
        }
    }
}

结果:
在这里插入图片描述

在上面的案例中,不仅会查询到电视,而且与小米相关的都会查询到,多个词之间是or的关系。

and关系: 某些情况下,我们需要更精确查找,我们希望这个关系变成and,可以这样做:

GET /heima/_search
{
    "query":{
        "match": {
          "title": {
            "query": "小米电视",
            "operator": "and"
          }
        }
    }
}

结果:
在这里插入图片描述

本例中,只有同时包含小米电视的词条才会被搜索到。

or和and之间:

orand 间二选一有点过于非黑即白。 如果用户给定的条件分词后有 5 个查询词项,想查找只包含其中 4 个词的文档,该如何处理?我们如何获得处于中间的某种结果?

match 查询支持 minimum_should_match 最小匹配参数, 这让我们可以指定必须匹配的词项数用来表示一个文档是否相关。我们可以将其设置为某个具体数字,更常用的做法是将其设置为一个百分数,因为我们无法控制用户搜索时输入的单词数量:

GET /ly/_search
{
    "query":{
        "match":{
            "title":{
            	"query":"小米曲面电视",
            	"minimum_should_match": "75%"
            }
        }
    }
}

结果:

在这里插入图片描述

多字段查询(multi_match):

multi_matchmatch类似,不同的是它可以在多个字段中查询

GET /ly/_search
{
    "query":{
        "multi_match": {
            "query":    "小米",
            "fields":   [ "title", "subTitle" ]
        }
	}
}

结果:
在这里插入图片描述

词条匹配(term):

term 查询被用于精确值 匹配,这些精确值可能是数字、时间、布尔或者那些未分词的字符串

GET /heima/_search
{
    "query":{
        "term":{
            "price":2699.00
        }
    }
}

结果:
在这里插入图片描述

多词条精确匹配(terms):

terms 查询和 term 查询一样,但它允许你指定多值进行匹配。如果这个字段包含了指定值中的任何一个值,那么这个文档满足条件:

GET /ly/_search
{
    "query":{
        "terms":{
            "price":[1899.00,3899.00]
        }
    }
}

结果:
在这里插入图片描述

结果过滤

默认情况下,elasticsearch在搜索的结果中,会把文档中保存在_source的所有字段都返回。如果我们只想获取其中的部分字段,我们可以添加_source的过滤

直接指定字段:

示例:

GET /ly/_search
{
  "_source": ["title","price"],
  "query": {
    "term": {
      "price": 2699
    }
  }
}

返回的结果:
在这里插入图片描述

指定includes和excludes:

可以通过:

  • includes:来指定想要显示的字段
  • excludes:来指定不想要显示的字段

示例:

GET /ly/_search
{
  "_source": {
    "includes":["title","price"]
  },
  "query": {
    "term": {
      "price": 2699
    }
  }
}

GET /ly/_search
{
  "_source": {
     "excludes": ["images"]
  },
  "query": {
    "term": {
      "price": 2699
    }
  }
}

在这里插入图片描述

高级查询

布尔组合(bool):

bool把各种其它查询通过must(与)、must_not(非)、should(或)的方式进行组合

GET /heima/_search
{
    "query":{
        "bool":{
        	"must":     { "match": { "title": "大米" }},
        	"must_not": { "match": { "title":  "电视" }},
        	"should":   { "match": { "title": "手机" }}
        }
    }
}

结果:
在这里插入图片描述

范围查询(range):

range 查询找出那些落在指定区间内的数字或者时间

GET /heima/_search
{
    "query":{
        "range": {
            "price": {
                "gte":  1000.0,
                "lt":   2800.00
            }
    	}
    }
}

结果:
在这里插入图片描述

模糊查询(fuzzy):

fuzzy 查询是 term 查询的模糊等价。它允许用户搜索词条与实际词条的拼写出现偏差,但是偏差的编辑距离不得超过2:

GET /ly/_search
{
  "query": {
    "fuzzy": {
      "title": "appla"
    }
  }
}

我们可以通过fuzziness来指定允许的编辑距离:

GET /ly/_search
{
  "query": {
    "fuzzy": {
        "title": {
            "value":"appla",
            "fuzziness":1
        }
    }
  }
}

结果:
在这里插入图片描述

过滤(filter)

条件查询中进行过滤

所有的查询都会影响到文档的评分及排名。如果我们需要在查询结果中进行过滤,并且不希望过滤条件影响评分,那么就不要把过滤条件作为查询条件来用。而是使用filter方式:

GET /ly/_search
{
    "query":{
        "bool":{
        	"must":{ "match": { "title": "小米手机" }},
        	"filter":{
                "range":{"price":{"gt":2000.00,"lt":3800.00}}
        	}
        }
    }
}

结果:
在这里插入图片描述

注意:filter中还可以再次进行bool组合条件过滤。

无查询条件,直接过滤

如果一次查询只有过滤,没有查询条件,不希望进行评分,我们可以使用constant_score取代只有 filter 语句的 bool 查询。在性能上是完全相同的,但对于提高查询简洁性和清晰度有很大帮助。

GET /ly/_search
{
    "query":{
        "constant_score":   {
            "filter": {
            	 "range":{"price":{"gt":2000.00,"lt":4000.00}}
            }
        }
}

结果:
在这里插入图片描述

排序

单字段排序:

sort 可以让我们按照不同的字段进行排序,并且通过order指定排序的方式

GET /ly/_search
{
  "query": {
    "match": {
      "title": "手机"
    }
  },
  "sort": [
    {
      "price": {
        "order": "desc"
      }
    }
  ]
}

多字段排序:

假定我们想要结合使用 price和 _score(得分) 进行查询,并且匹配的结果首先按照价格排序,然后按照相关性得分排序:

GET /goods/_search
{
    "query":{
        "bool":{
        	"must":{ "match": { "title": "手机" }},
        	"filter":{
                "range":{"price":{"gt":2000.00,"lt":5000.00}}
        	}
        }
    },
    "sort": [
      { "price": { "order": "desc" }},
      { "_score": { "order": "desc" }}
    ]
}
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

龙源lll

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值